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Abstract

Agents face strategic uncertainty in a coordination problem that is akin to debt rollover

or currency attacks. We model this as a global game of regime change. A principal wants her

preferred regime (PPR) to succeed. She faces the coordination risk that a viable PPR may

fail due to the strategic uncertainty. The principal diffuses this coordination risk by making

a finite partition of the mass of agents. She abandons her preferred regime if it is no longer

viable. We show that with a sufficiently diffused policy, the risk that agents may attack the

PPR unravels from the end.
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Introduction

Coordination games give rise to multiple equilibria. The strategic uncertainty that agents face

concerning the actions and beliefs of others may lead to an undesirable outcome. For example,

pessimistic investors who are wary of the non-participation of other potential investors may decide
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to walk away from a profitable investment opportunity. Countries that try to attract foreign invest-

ments often do so to no avail. Similarly, borrowers may fail to persuade their creditors to roll over

their debt claims despite sound fundamentals. In this paper, we take the global game approach

to model this coordination risk. Suppose that a principal, similar to a Pigouvian planner, tries to

achieve the desired outcome that the market fails to achieve. Sakovics and Steiner (2012) and Cong

et al. (2016) find the optimal investment subsidies that, at a given cost, maximize the likelihood of

successful coordination.1 Unlike the planner in the above mentioned papers, we consider a principal

who cannot offer monetary incentives. However, the principal can provide some additional infor-

mation to convince the agents to follow her recommendations, as in Bergemann and Morris (2013),

Inostroza and Pavan (2017) or Goldstein and Huang (2016). In this paper, we propose a simple

policy through which a principal can eliminate all the coordination risk.

Imagine that there are two regimes, a mass of agents and a principal. Each agent decides which

regime to attack. In the end, only one of these two regimes succeeds. The principal strictly prefers

one regime over the other. We refer to this regime as the principal’s preferred regime (PPR). The

principal wants the PPR to succeed in the end. However, it will succeed if and only if the PPR

has sufficient fundamental strength to withstand the aggregate attack. For example, a borrower

survives in the end if her liquidity holding (the fundamental strength) is greater than the total

withdrawal from her creditors (aggregate attack). Although the agents prefer not to attack the

regime that succeeds, they are uncertain as to which regime will succeed.

We assume that the agents are uncertain about the underlying fundamental strength and receive

noisy private information about it. This game is commonly referred to as global game of regime

change.2 Global game theory predicts a unique threshold strength, such that the PPR succeeds if

and only if it has strength beyond this threshold. We say that a PPR is not “viable” if it fails even

when no agent attacks it. Thus, a viable PPR may fail because of strategic uncertainty if it is not

sufficiently strong. We call this probability of failure - the coordination risk.

The principal adopts a simple policy. We call this policy, diffusing coordination risk. The policy

1While Sakovics and Steiner (2012) consider heterogenous agents and show that subsidizing the more reluctant
agents matters more, Cong et al. (2016) show that in a dynamic coordination problem if liquidity injection is equally
costly across periods, then early injection is more helpful.

2For examples of a global game of regime change, see Morris and Shin (1998) and Angeletos et al. (2007) for the
currency crisis, Goldstein and Pauzner (2005) for self-fulfilling bank runs, Vives (2014) for financial fragility, Edmond
(2013) for riots and political change and Konrad and Stolper (2016) for fight against tax havens. For more recent
developments see Szkup and Trevino (2015).
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makes a finite partition of the mass of agents. Agents within the same group make their decisions

simultaneously while different groups move chronologically. The principal commits to the rule that

she will abandon her preferred regime if it is no longer viable. Thus, when the game reaches group

t, the principal endogenously and publicly transmits the information whether the PPR continues

to be viable. We refer to this as public news of continued viability - PNV.

In the spirit of the Bayesian persuasion literature after Kamenica and Gentzkow (2011) and Ely

(2017), we can think of our principal as an information designer. The principal does not know the

private information that any agent receives. However, she has an information advantage over the

agents in the sense that she can verify the viability of her preferred regime. The principal decides

to whom she discloses this information. This policy can be interpreted as a simple recommendation

“to attack” the PPR when it is abandoned and “not to attack” when the PPR is not abandoned. If

the principal abandons the PPR, then the agents learn that the PPR is no longer viable regardless

of their actions. Hence, following the principal’s recommendation and attacking the PPR is their

dominant strategy. On the other hand, if the principal does not abandon the PPR, then the agents

learn that it has survived the attacks so far. Is this information sufficiently strong to convince the

agents to follow the principal’s recommendation and not attack the PPR? In this paper, we show

that if all the groups are sufficiently small in size, there is a unique equilibrium in which the agents

indeed ignore their private information and follow the principal’s recommendation. In other words,

sufficient diffusion eliminates the coordination risk.

We share a close conceptual connection with Bayesian persuasion and information design for

heterogeneously informed multiple receivers as defined by Bergemann and Morris (2016).3 However,

the basic question is different. The information design literature considers the general scope of

information structure and asks the question: Is it possible to design the information structure

to achieve a certain outcome in equilibrium? In reality, we do not expect that a principal can

have full control over designing the information structure. So, we look into a specific type of

information structure that is less demanding in the sense that it does not require additional ex-ante

commitment power of the principal and ask the question: Can this simple information structure

achieve a desirable outcome in any possible equilibria? Recall that the principal wants her preferred

3Mathevet et al. (2017) and Taneva (2016) consider a more general persuasion setting for multiple receivers. Ely
(2017) considers information disclosure in a dynamic setting. See Alonso and Câmara (2016a), Alonso and Câmara
(2016b), Bardhi and Guo (2016) for persuasion in the context of voting.
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regime to succeed in the end. If she learns that the PPR is not viable - i.e., it will fail regardless of

the actions of the agents in the subsequent groups, then she has no reason to convince the agents

not to attack it.

Coming back to the debt rollover problem, this policy is equivalent to an asynchronous debt

structure. Only a fraction of short term debts mature at a time and if most of them are not rolled

over, then the borrower may become illiquid and fail. The principal wants the borrower to succeed

but if she learns that the borrower is bound to fail, regardless of the creditors’ decisions, then she

abandons defending the borrower. We show that a sufficiently asynchronous debt structure can

make the borrower immune to panic-based runs.

When agents move simultaneously, there is no information transmission. Agents completely

rely on their private information to infer what information others have and what they are likely

to do. The partition alone does not change this. However, by diffusing the coordination risk, the

principal transmits the public information of continued viability. Angeletos et al. (2007) study

the same type of public information in the context of currency attacks. Similar to our model,

Goldstein and Huang (2016) and Inostroza and Pavan (2017) also consider a principal who uses

such information as a tool to convince the agents not to attack the PPR. They consider a principal

who recommends “Not to Attack” the PPR only when the PPR has strength beyond a certain

threshold. In the context of banking, this can be interpreted as a “stress test”. The authors show

that if the principal can “commit” to such a rule with a sufficiently high threshold, then agents

will follow the recommendation. Inostroza and Pavan (2017) find the condition under which such

public disclosure is optimal. Observe that below this policy threshold, the PPR still fails. Thus,

this policy cannot achieve the first best outcome. Also, the ex-ante commitment is crucial for this

policy. If the principal knows that agents will not attack the PPR if she recommends them to do

so, then she has an incentive to lie and recommend the same, even when the PPR does not have

strength beyond the announced threshold. As mentioned before, our principal does not face such a

commitment issue.

Our principal only discloses that the PPR is viable as opposed to disclosing that the PPR is

sufficiently strong as in Goldstein and Huang (2016). Thus, the evidence in itself is not convincing

enough for the agents not to attack the PPR. However, if only a small fraction of agents are facing

this strategic uncertainty, then we show that this information can be sufficiently strong to convince

the agents not to attack the PPR. Imagine that in a static game, the actual strength is θ and there
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are α mass of agents playing this game. The PPR will survive if θ is large enough to sustain attack

from α mass of agents. Thus, the effective strength is θ/α. Suppose that the agents were receiving

some noisy private information s = θ + σε, where ε is a random noise and σ is a scale parameter.

Then we can think of s/α as the private information about θ/α. Note that

s

α
=
θ

α
+
σ

α
ε.

Thus, the scale parameter σ/α is inversely proportional to α - i.e., the private information becomes

a very noisy predictor of the effective strength as α becomes very small. We show that as the

private information becomes sufficiently noisy, agents indeed ignore their private information and

follow the principal’s recommendation.

When the principal sufficiently diffuses the coordination risk, there are several groups with a

sufficiently small mass of agents in each group. After learning that the PPR has survived so far,

agents in these groups are not only concerned regarding the beliefs and actions of the other agents in

their group (current risk) but also, regarding the actions and beliefs of the agents in the subsequent

groups (future risk). Let us first consider the agents in group 1. Suppose that they believe that if

the PPR survives the current attacks, it will survive all the future attacks - i.e., there is no future

risk. Then they are essentially facing a static regime change problem. Therefore, as argued before,

if the group size is sufficiently small, the agents will ignore their private information and follow the

principal’s recommendation. Next, we argue that the effect of PNV is stronger as the PPR survives

attacks from a larger mass of agents. Thus, given no future risk and the same group size, if agents

in group t = 1 ignore their private information and follow the principal’s recommendation, then so

will the agents in the subsequent groups.

The above argument shows that the principal can convince the agents not to attack the PPR,

provided that she can convince them that there is no future risk. In other words, the principal

needs to convince the agents that the agents in the subsequent groups will also follow her recom-

mendation. Since the agents in the last group do not face any future risk, they will surely follow

the recommendation. Therefore, the agents in the penultimate group also face no future risk and

follow the recommendation and so on. Thus, the coordination risk unravels from the end.

Since we are considering a private information world, this unraveling is not a standard backward

induction argument. Formally, we show that there is a uniform critical mass α∗ such that when the
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mass of agents αt in any group t is less than α∗, if the coordination risk unravels until (t + 1) (no

agent will attack the PPR if it survives the current attack from group t), then it also unravels until

t. Given no future risk for the last group, we establish the unraveling of the coordination risk from

the end.

In the main text, we consider a standard regime change game and abstract away from some

particular aspects that come with specific examples. In the selected application section, we show

how our proposed policy works for many prevalent applications of the regime change game. Capital

control policies like setting an annual limit for capital outflow, could work to deter the currency

attacks and to keep the foreign exchange rate less volatile. Sufficiently asynchronous debt structures

could help the borrower to avoid panic-driven debt runs. In reality, we can see that the suggested

policies have been applied to the foreign exchange and debt markets. For example, the central bank

in China has imposed the ceiling for converting the domestic currency to foreign assets for a long

time in order to regulate the foreign exchange rate (see Neely (2017)). Corporate bond issuers adopt

the suggested policies through the diversification of debt rollovers across maturity dates (Choi et al.

(2016)). Note that such policies can make the borrower (or the country) immune to panic-based runs

(currency attacks). However, adopting such a policy only in times of distress could have a severely

adverse impact on agents’ beliefs about the solvency of the borrower (country’s commitment to

maintain the exchange rate). Ex-ante announcement of the suggested policy precludes this signaling

problem.

Asynchronous move in coordination games is hardly a novel contribution. Gale (1995) shows

that if agents can choose to delay their actions in a coordination game, they indeed do so in

equilibrium. This endogeneity of timing is missing in our paper. While Gale considers finite agents,

Dasgupta (2007) models a continuum of agents moving sequentially in two groups. Moreover,

unlike Gale, the author assumes that agents do not perfectly observe the past actions and shows

that the probability of successful coordination increases under sequential decisions. In this paper,

the endogenous information transmission is through the public information of continued viability,

which is in contrast to the learning from noisy private information about past attacks as in Dasgupta

(2007). However, we show that our result is robust to introducing additional information similar to

Dasgupta (2007). The novelty of this paper is in the main result that a sufficiently fine partition

can eliminate all the strategic uncertainty. Lagunoff and Matsui (1997) and Dutta (2012) show

similar results in asynchronous move coordination games but they consider a repeated game and
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there is complete and perfect information. They show that mis-coordination disappears within a

finite number of periods and agents start coordinating on the Pareto dominant outcome thereafter.

In contrast, in this paper it is not necessary that the principal prefers the Pareto dominant outcome.

As discussed before, we consider a private information world as in the global game literature

following Carlsson and Van Damme (1993). This theory provides a unique and intuitive monotone

equilibrium selection in coordination games. For a comprehensive discussion of Global Game, see

Morris and Shin (2003) and Morris et al. (2016). We borrow from two strands of papers within

this global game literature. The first strand follows Angeletos et al. (2007) and explores the scope

of public news of survival as a tool to persuade agents. Huang (2017) extends Angeletos et al.

(2007) by considering a principal with a long run reputation concern. In Cong et al. (2016), the

principal can influence such survival news by early liquidity injection. In this literature, agents may

get multiple opportunities to attack but they do not have any incentive to coordinate with future

actions which are influenced by their own actions. The second strand, such as Dasgupta et al.

(2012) and Mathevet and Steiner (2013), on the other hand, focuses on the incentive to coordinate

with future actions. However, neither of these two strands of literature alone explains how diffusing

coordination risk persuades all the agents to ignore their private information.4

1 A Simple Model of Regime Change

1.1 Static Benchmark

Model Setup There are two regimes, indexed by R ∈ {0, 1}, a continuum of agents, indexed

by i ∈ [0, 1] and a principal. Agents simultaneously decide which regime to attack. The action space

for any agent i is Ai = {0, 1}. If he takes an action ai = R ∈ {0, 1}, then we say that the agent

supports regime R or attacks the other regime. The principal prefers one regime over the other.

Without loss of generality, we assume that regime 1 is the principal’s preferred regime (PPR). The

principal gets a payoff of 1 if the PPR succeeds and 0 otherwise. Therefore, the principal wants

the PPR to succeed in the end. Let θ be the underlying fundamental strength of the PPR and

4The result has a flavor similar to the information cascading result of Banerjee (1992), Bikhchandani et al. (1992).
The authors show that it is possible that after a few agents take the same action, others start following the herd,
ignoring their own private information. Unlike the information cascading literature, agents are facing a coordination
problem that involves static and dynamic strategic uncertainty. Under a sufficiently diffused policy, we show that
herding is not just a possibility rather it will inevitably start from the beginning.
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w =
´
i
1(ai = 0)di =

´
i
(1 − ai)di be the aggregate attack or the withdrawal from supporting the

PPR. The PPR succeeds in the end if and only if its fundamental strength θ is strong enough to

withstand the aggregate attack against it - i.e., θ ≥ w.

Agents are assumed to be ex-ante identical and risk-neutral. If the agent supports regime R and

it succeeds, then he gets a payoff of bR. Whereas if he had attacked the regime that succeeds, then

he would have received cR. We assume bR > cR for any R ∈ {0, 1}. If regime R succeeds, then

agent i would be better off if he had not attacked it. This feature is usually referred to as strategic

complementarity. Given the fundamental strength (θ) and the aggregate attack against the PPR

(w), let u(ai, w, θ) be the payoff5 for agent i if he takes action ai, where

u(1, w, θ) =

b1 if θ ≥ w

c0 if θ < w

, u(0, w, θ) =

c1 if θ ≥ w

b0 if θ < w.

(1)

Agent i receives noisy private information about θ, denoted by

si = θ + σεi, (2)

where the error terms εi is conditionally independent6 and identically distributed with zero mean.

Let F : [−1/2, 1/2]→ [0, 1] be the distribution and f be the density of the error. We assume that

F is continuously differentiable and log-concave. This log-concavity implies that for any a > 0,

∂
∂x

(F (x− a)/F (x)) > 0.7 σ scales the random noise εi. Nature selects the fundamental strength θ

from the interval [θ, θ̄] with uniform probability. We assume that θ ≤ −σ and θ̄ ≥ 1 + σ.8 For any

θ, the probability of receiving private signal s is distributed via F ((s− θ)/σ). Given the uniform

prior, for any s ∈ [−σ/2, 1 + σ/2], θ is distributed via 1 − F ((s− θ)/σ). We call τ := 1/σ2 the

precision of the private signal.

5We prove our results for a more general payoff structure. See the proof of Proposition 5 in the appendix. For
simplicity, we use this payoff structure in the main paper.

6See Judd (1985) for the existence of a continuum of independent random variables.
7Inostroza and Pavan (2017) also make a similar assumption regarding the noise distribution. Most of the

distributions we use in practice satisfy log-concavity, e.g., uniform, normal or exponential distribution. The exceptions
are student’s t, and the log-normal distributions.

8This assumption guarantees that the common prior is uninformative when agents have private information. If
s < −σ/2 (or s > 1 + σ/2), agents know that θ < 0 (or θ > 1). These capture the dominance regions.

8



Equilibrium Analysis This is the standard static global game problem and readers familiar

with this literature can skip this section. Agents receiving higher signals believe that the PPR is

stronger against attacks. They also believe that other players believe that the PPR is stronger

against attacks and so on (higher order beliefs).

If an agent believes that the PPR will succeed with probability greater than p, he will not attack

it, where

p :=
1

1 + b1−c1
b0−c0

.

We now characterize the monotone equilibrium where an agent i does not attack the PPR if and

only if si ≥ s∗ for some threshold s∗. In equilibrium, the higher the fundamental θ, the larger the

share of agents who receive signals above s∗ and do not attack the PPR. Thus, there exists θ∗

such that the PPR succeeds if and only if θ ≥ θ∗. The monotone equilibrium can be summarized

by (θ∗, s∗). Following Morris and Shin (2003), this monotone equilibrium is indeed, the unique

equilibrium.

Proposition 1 There is a unique Bayes Nash equilibrium in which an agent plays ai = 1 if and

only if he receives a signal si ≥ s∗. The PPR succeeds if and only if θ ≥ θ∗, where θ∗ = p and

s∗ = θ∗ + F−1(θ∗)/
√
τ .

If θ < 0, then the PPR will fail regardless of the agents’ action. We call such a PPR not viable.

Due to strategic uncertainty, the PPR may fail even when it is viable. Let P (0 ≤ θ < θ∗) be

this probability of failure. The above proposition uniquely identifies this probability, which we call

the coordination risk. The principal wants to minimize θ∗, which is a sufficient statistic for the

coordination risk. The first best outcome for the principal is θ∗ = 0.

1.2 Diffusing Coordination Risk

Imagine that the principal publicly announces the following policy: (1) Each agent will be randomly

assigned to one of the T groups. Agents who are assigned to group t = 1, 2, . . . , T , will take actions

only once at time t,9 and their actions are irreversible and (2) She will abandon her preferred regime

if it is no longer viable. We refer to this policy as diffusing coordination risk (or in short the diffused

9The chronology is introduced to achieve sequentiality in the static game. Note that there is no discounting of
payoffs.
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policy) and denote it by (T, (α)), where T ∈ N and (α) ≡ (α1, α2, . . . , αT ) ∈ the T − 1 simplex

∆T−1 ≡ {(α1, α2, . . . , αT ) ∈ RT | αt ≥ 0 for all t ∈ {1, 2, . . . , T} and
∑T

t=1 αt = 1}.

Let ait ∈ {0, 1} be the action taken by agent i in group t and wt be the proportion of agents

in group t who attack the PPR - i.e., wt = (1/αt)
´

(1 − ait)di. The diffused policy restricts the

magnitude of attack that can occur within one period - i.e., αtwt ≤ αt - but does not change the

maximum possible aggregate attack - i.e.,
∑T

t=1 αt = 1. The preferred regime succeeds if and only

if it withstands all attacks against it. The payoff under a diffused policy is

u(1, w, θ) =

b1 if θ ≥
∑T

t=1 αtwt

c0 if θ <
∑T

t=1 αtwt

, u(0, w, θ) =

c1 if θ ≥
∑T

t=1 αtwt

b0 if θ <
∑T

t=1 αtwt.

(3)

The payoff in Equation (3) is exactly as given in Equation (1), where w ≡
∑T

t=1 αtwt.
10

As in the benchmark model, agents share an uninformative prior and receive some noisy private

information about the fundamental strength θ. In addition, this policy endogenously transmits the

public information that the PPR continues to be viable. Let θt be the residual fundamental strength

at time t. Then,

θt := θt−1 − αt−1wt−1 = θ1 −
t−1∑
u=1

αuwu for t = 2, 3, . . . , T and θ1 = θ. (4)

If the PPR fails to withstand the attacks until (t − 1) - i.e.,
∑t−1

u=1 αuwu > θ1, then the residual

strength θt < 0. Therefore, the PPR will fail regardless of the actions of the agents in the subsequent

groups. According to the proposed policy, the principal abandons such non-viable PPR. If the

principal abandons the PPR, then the agents learn that the PPR cannot succeed. Thus, their

dominant strategy is to attack the PPR. On the other hand, if she does not abandon the PPR, the

agents publicly learn that the PPR is still viable - i.e., θt ≥ 0. We refer to this information as the

public news of continued viability (PNV).11

10The payoff is realized at the end, depending on which regime succeeds. In many practical examples, payoff from
a certain action does not depend on the final outcome. For example, in the case of a debt run game, a creditor may
get his money back immediately after his withdrawal, even if the borrower fails in the future. We will address this
issue in Section 3.

11Although we are assuming here that agents do not receive any additional information, in Section 4, we show that
our result is robust, accounting for agents receiving additional private information regarding previous withdrawals.
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Dynamic Information Design The proposed policy, “diffusing coordination risk” essentially

designs the “information structure” - i.e., specifies what information is revealed to whom. The

principal wants to convince a mass of agents not to attack a viable PPR. Imagine that a mass of

agents is uniformly distributed over the time interval [0, 1]. Each agent receives private information

and all agents make their decisions sequentially. They do not see others’ actions and they cannot

communicate. This is equivalent to the simultaneous move game we consider in Section 1.1. The

policy (T, (α)) induces the following information structure: The principal checks whether the PPR

is still viable after each αt units of elapsed time (after the initial check at time 0) and discloses the

result publicly. Whether the PPR is still viable or not depends on the past actions of agents. Thus,

the distribution over the signal realizations is history dependent. Since the actions are irreversible,

the agents cannot change their decisions based on a public information that is disclosed at a later

stage. If the PPR is still viable, the principal recommends not to attack it and if it is no longer

viable, then she recommends to attack it.

Equilibrium We look into monotone equilibrium, which is a symmetric monotonic Perfect

Bayesian Equilibrium. Any agent i in any group t plays a monotone strategy: ait = 1 if and only

if si ≥ s∗t . The PPR succeeds in the end iff θ = θ1 ≥ θ∗1. We define θ∗t such that if the residual

strength θt ≥ θ∗t , then the PPR withstands all attacks from t until T . We refer to this equilibrium

as (θ∗t , s
∗
t )
T
t=1. By definition, for any t, θ∗t ≥ θ∗t+1.12

2 Equilibrium Characterization

Given a monotone equilibrium (θ∗t , s
∗
t )
T
t=1, we define ψt(θt) := θt − αtP (s < s∗t |θt) that maps the

residual strength at t to the residual strength at t+ 1 and ψt that maps θ1 to θt+1 as

θt+1 := ψt ◦ ψt−1 ◦ . . . ψ1(θ1) = ψt(θ1). (5)

We use the convention, ψ0(θ1) = θ1. In any monotone equilibrium, a higher initial strength implies

that there will be less attack against the PPR and thus, there will be higher residual strength.

12By definition of θ∗t , for any t, if θt ≥ θ∗t , then θt+1 ≥ θ∗t+1. Since θt ≥ θt+1, we can say that whenever θt ≥ θ∗t ,
θt ≥ θt+1 ≥ θ∗t+1. Thus, θ∗t ≥ θ∗t+1.
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Consequently, these ψt, ψ
t are nondecreasing functions. We define the inverse function as

ht(x) ≡ (ψt−1)−1(x),

which represents the fundamental strength at t = 1 that would have resulted in the residual fun-

damental strength x at time t. This is also a nondecreasing function. Note that these functions

depend on the equilibrium specifications. The detailed information structure of a simple bifurcated

diffusion is illustrated in Figure 1.

0

Nature picks θ

Prior: θ ∼ U [θ, θ̄]
Private info: si = θ + σεi

t = 1

Agent i ∈ [0, α1] moves

Aggregate attack:α1w1

PNV: θ1 ≥ 0
θ1 = θ

t = 2

Agent j ∈ (α1, 1] moves

Aggregate attack:α2w2

θ2 = θ1 − α1w1 = ψ1(θ1)
PNV: θ2 ≥ 0 or θ1 ≥ h2(0)

T

Payoff realized
based on θ and
w = α1w1 + α2w2

Figure 1: Timeline in a bifurcated diffusion

By definition of ht(.), if the initial fundamental strength θ1 ≥ ht(0), then the PPR survives the

attacks from the first (t−1) groups. If the PPR survives attacks from a larger share of agents, then

the initial strength must have been even higher. Thus, regardless of the equilibrium specification,

ht+1(0) ≥ ht(0), for any t. If θ1 ≥ ht(0), the principal does not abandon the PPR when the game

reaches group t. However, the principal will abandon the PPR later, unless θ1 ≥ θ∗1. By definition

of θ∗t , the PPR will succeed in the end only if the residual fundamental θt ≥ θ∗t . Mapping it back

to the initial strength θ1 using ht(.), this condition for success is equivalent to θ1 ≥ ht(θ
∗
t ). Thus,

by definition of θ∗1, for any t = 1, 2, . . . , T ,

ht(θ
∗
t ) = θ∗1.

For any t = 1, 2, . . . , T , if θ1 ∈ [ht(0), ht+1(0)), then the PPR remains viable until the game reaches

group t and then fails. If θ1 = θ∗1, then aggregate attack exactly exhausts all the fundamental

strength - i.e., θT+1 = 0. Hence, hT+1(0) = θ∗1. Figure 2 shows these different thresholds that

capture when the PPR fails.
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θ1 ≥ 0 h2(0) ht(0) ht+1(0) hT (0) θ∗1 = ht(θ
∗
t ) θ1

for any t

Future riskCurrent risk

PPR fails
before t

PPR fails
at t

PPR fails
after t

PPR succeeds
in the end

Figure 2: Current and Future Coordination Risk

After the game reaches group t, given the uniform prior, {ht(θ∗t ) − ht(0)} captures the coordi-

nation risk that the PPR which continues to be viable will not succeed in the end. This risk can

be divided in two parts:

1. Current coordination risk: If θ1 ∈ [ht(0), ht+1(0)), then the PPR fails to survive the attacks

from agents in group t and thus, the PPR will not be viable when the game reaches group

(t+ 1).

2. Future coordination risk: If θ1 ∈ [ht+1(0), ht(θ
∗
t )), then the PPR survives the current attack

and thus, is viable when the game reaches group (t+ 1) but will not survive future attacks.

If θ∗t = 0 or θ∗1 = ht(0), then there is no coordination risk after the game reaches group t - i.e., if

the PPR is viable when the game reaches group t, it will succeed in the end. Therefore, if θ∗t = 0,

then θ∗t+1 = . . . = θ∗T = 0. The following proposition characterizes any monotone equilibrium.

Proposition 2 When the coordination risk is diffused, there can be multiple equilibria. Any mono-

tone equilibrium (θ∗t , s
∗
t )
T
t=1 satisfies the following conditions:

(a) For some t′ ∈ {1, 2, . . . , T + 1}, θ∗t′ = θ∗t′+1 = . . . θ∗T+1 = 0.

(b) For t ∈ {1, 2, . . . , t′ − 1}, θ∗t satisfies the following recursive relation

θ∗t−θ∗t+1

αt

F
(
F−1

(
θ∗t−θ∗t+1

αt

)
+
√
τ(ht(θ∗t )− ht(0))

) = p. (6)

(c) For all u ∈ {1, 2, . . . , T},

s∗u = θ∗1 +
1√
τ
F−1

(
θ∗u − θ∗u+1

αu

)
. (7)
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The above recursive relations do not necessarily have a unique fixed point. Thus, unlike the

unique equilibrium in the benchmark model in Section 1.1, there are multiple equilibria. Such

multiplicity arises even in a static problem due to the PNV. Consider a particular case: t′ = 1 in

point (a) of Proposition 2. Then θ∗t = 0 for all t ∈ {1, 2, . . . , T}. For a viable PPR, if agents believe

that no agent attacks the PPR, then it is rational for them not to attack the PPR. Recall that this

is the first best the principal can achieve and it is always an equilibrium.

In general, given the fundamental thresholds (θ∗u)
T
u=1, Equation (7) represents the threshold

signals s∗u such that at θ1 = θ∗1, the proportion of agents in group u who receive su < s∗u and hence

attack the PPR, is equal to (θ∗u − θ∗u+1)/αu - i.e.,

wu(θ1 = θ∗1) = F
(√

τ(s∗u − θ∗1)
)

=

(
θ∗u − θ∗u+1

αu

)
.

Thus, when θ1 = θ∗1, the total attack against the PPR from time t to T is

T∑
u=t

αu

(
θ∗u − θ∗u+1

αu

)
= θ∗t .

Hence, if θ1 = θ∗1, the PPR is just strong enough to withstand all attacks (from time 1 to T ) and

the residual fundamental strength at any t is just strong enough to withstand all future attacks

(from time t to T ) - i.e., θt = θ∗t .

Imagine an agent in group t who receives the threshold signal s∗t . He believes that the PPR will

succeed with probability

P (θ1 ≥ θ∗1|si = s∗t , θ1 ≥ ht(0)) =
P (θ1 ≥ θ∗1|si = s∗t )

P (θ1 ≥ ht(0)|si = s∗t )
.

The LHS of Equation (6) captures this belief. If θ∗t > 0, in equilibrium this threshold agent is

indifferent between attacking and not attacking. Therefore, this belief equals p.

To solve for the sequence (θ∗t )
T
t=1 from the above recursive relation, we take a candidate solution

θ∗1. If θ∗1 = 0, then θ∗t = 0 for all t. Otherwise, let us consider the case θ∗1 > 0. Since h1(θ) = θ, we

can solve recursive relation (6) for θ∗2(θ∗1). From Equation (7), we can solve for s∗1(θ∗1, θ
∗
2(θ∗1)). Given

s∗1, we have ψ1(.|θ∗1) and hence h2(.|θ∗1). We can use recursive relation (6) and (7) again for θ∗3 and

14



so on. Finally, if θ∗t+1 = 0 for some t ∈ {1, 2, . . . , T}, then we must have

θ∗t (θ∗1)

αt

F
(
F−1

(
θ∗t (θ∗1)

αt

)
+
√
τ(ht(θ∗t (θ

∗
1)|θ∗1)− ht(0|θ∗1))

) = p.

2.1 Relation between Current Risk and Future Risk

Recall that {ht(θ∗t )−ht+1(0)} captures the future risk for agents in group t. Since ht+1(θ∗t+1) = ht(θ
∗
t ),

this future risk is also the aggregate risk that group (t + 1) faces, {ht+1(θ∗t+1) − ht+1(0)}. Thus, if

θ∗t+1 = 0, then agents in group t face no future risk. Then the entire risk for agents in group t comes

from the agents within their own group.

The current risk, on the other hand, becomes zero if ht(0) = ht+1(0). This implies that if the

PPR is viable when the game reaches group t, it is also viable when the game reaches the next

group. The next corollary shows that, if there is no current risk for group t, once the game reaches

group t, it is not only guaranteed to remain viable when the game reaches the next group but also

guaranteed to succeed in the end.

Corollary 1 If agents in any group t face no current coordination risk, - i.e. ht(0) = ht+1(0), then

the future coordination risk is also 0. This implies, θ∗t+1 = θ∗t = 0.

There is no current risk at t only if the agents in group t ignore their private information and

never attack a viable PPR. However, these agents are not only concerned with the current attacks

but also the future attacks. Therefore, to persuade the agents in group t to refrain from attacking the

PPR, it is necessary to eliminate the future risk. In the next subsection, we show that eliminating

the future risk is also sufficient to eliminate the current risk, when it is combined with sufficiently

small group sizes. In a finite partition, the last group does not face any future risk. We will show

that a sufficiently diffused policy eliminates the current risk for the last group and subsequently for

all the preceding groups.

2.2 Main Result

The principal wants to maximize the probability that her preferred regime succeeds. To this end,

she tries to minimize θ∗1. We assume that the principal cannot credibly promise payoff incentives

for not attacking the PPR. Instead, similar to an information designer, she provides additional
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information to convince the agents not to attack a viable PPR. The first best outcome is achieved

when θ∗1 = 0. We only focus on a specific policy called diffusing coordination risk, (T, (α)). By

design, if the agents follow the principal’s recommendations, then this first best is achieved. As

discussed in Section 1.2, when the principal abandons the PPR and recommends the agents to

attack the PPR, the agents learn that the PPR cannot succeed and so they will surely follow the

recommendation. The challenge is to convince the agents not to attack the PPR.

We have already shown that when the principal diffuses the coordination risk, one possible

equilibrium is that the agents follow the principal’s recommendation and do not attack the PPR.

Thus, the first best is always a possibility. However, it is also possible that the agents are not

convinced and attack the PPR. The following theorem shows that if the principal makes each group

size sufficiently small, then she can definitely convince the agents not to attack the PPR. We will

refer to this policy as a sufficiently diffused policy.

Theorem 1 Suppose that agents have uninformative prior and that distribution of noise satisfies

log-concavity.13 Given (p, τ), there exists α∗ > 0, such that if the principal sufficiently diffuses the

coordination risk - i.e., takes a policy (T, (α)) such that αt ≤ α∗ for all t ∈ {1, 2, . . . , T} - then there

is a unique equilibrium in which θ∗1(T, (α)) = 0.

This implies that, for any non-negative realization of θ - i.e., a viable PPR, there is a uniform bound

on how much the principal needs to diffuse the coordination risk in order to make sure that the

PPR succeeds in the end.

The key argument behind this main result involves two steps: (1) We argue that a sufficiently

small group of agents can be convinced not to attack the PPR when they learn PNV, provided they

believe that the agents in the subsequent groups will also follow the principal’s recommendation -

i.e., there is no future risk. (2) Given finite partition, the last group does not face any future risk -

i.e., θ∗T+1 = 0 and so can be convinced not to attack the PPR if the group size is sufficiently small.

Then the same holds for the penultimate group and so on. Thus, the coordination risk unravels

from the end.14 In this section, we establish this formal inductive argument. We show that for

13The uninformative prior assumption is only for simplicity. In Section 4 we will show that the result is robust
to informative prior. Log-concavity is sufficient for the global game argument of iterated elimination of never
best responses, when there is public information of continued viability. Angeletos et al. (2007) use similar public
information and assume normal distribution, which is indeed log-concave.

14Huang (2017) shows a similar result where a sufficiently patient long run principal can dissuade agents from
attacking the currency regardless of the actual strength. The mechanism, however, is very different. The author
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any t, if the coordination risk has unraveled until (t + 1) - i.e., θ∗t+1 = 0 and αt < α∗, then the

coordination risk also unravels until t - i.e., θ∗t = 0.

To understand the inductive argument, consider the game at t and θ∗t+1 = 0. Recall from

Proposition 2 that there is always an equilibrium in which θ∗t+1 = 0 - i.e., all the agents follow the

principal’s recommendation from group (t+ 1) onwards. Given this unraveling of coordination risk

until (t+1), the agents in group t only face current coordination risk - i.e., the strategic uncertainty

is from other agents in their own group. The agents publicly learn θ1 ≥ ht(0) and they have their

noisy private information. The public news implies that the initial strength θ1 is large enough such

that the PPR has sustained all the attacks until now. From Proposition 2 we can say that (θ∗t , s
∗
t )

are such that either θ∗t = 0 or

θ∗t
αt

F
(
F−1

(
θ∗t
αt

)
+
√
τ(ht(θ∗t )− ht(0))

) = p , (8)

and

s∗t = ht(θ
∗
t ) +

1√
τ
F−1

(
θ∗t
αt

)
. (9)

The inductive argument claims that θ∗t = 0 is the only equilibrium. This implies that in the absence

of future coordination risk, agents in group t will ignore their private information and follow the

principal’s recommendation. However, note that the PNV is endogenous and it influences the

strategic uncertainty differently across groups - i.e., the ht(.) function differs across groups in the

above two equations. Assuming no future risk, in Step 1 we show that agents in group 1 ignore their

private information when α1 < α∗ (Proposition 3) and then in Step 2, we show that the argument

holds for any group t (Proposition 4). The final step combines the two propositions and shows that

the coordination risk unravels from the end.

2.2.1 Step 1: Continued viability and Current Coordination Risk

In this section, we show that the inductive argument holds true for group 1: if the coordination

risk has unraveled until group 2 and α1 is sufficiently small, then the coordination risk will unravel

argues that the principal will eventually build sufficient reputation and then agents will stop attacking. However, if
there are only a finite number of attacks, then the principal would have defended against the last attack regardless
of the fundamental. Note that this unraveling mechanism in Huang (2017) crucially depends on the principal having
future concern, while we are considering a one-shot game for the principal. In our asynchronous coordination game,
it is the agents who have dynamic concerns but not the principal.
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until group 1. If θ1 is the fundamental strength and there is no future risk, then the PPR succeeds

iff w1 < θ1/α1. Hence, the effective fundamental strength is θ1/α1. Recall from Proposition 1 that

in the absence of PNV, the threshold fundamental is p. Thus, in equilibrium the PPR succeeds if

θ1/α1 ≥ θ∗1/α1 = p. Since θ∗1 = α1p, the coordination risk goes down proportionally with α1.

If the principal does not abandon the PPR, the agents learn PNV. This information is asym-

metric in nature. The agents learn that the PPR continues to be viable but learn nothing about

the viability of the other regime. In equilibrium, this will make the agents more optimistic about

the success of the PPR. Of course, the extent of the influence of PNV depends on the precision of

their private signals. We argue that if the signals are sufficiently noisy, then agents ignore their

private information and follow the principal’s recommendation (See Lemma 2 in the Appendix B).

Given the signal structure s and (α) commonly known, the private information about the effective

fundamental strength θ1/α1 is
s

α1

=
θ1

α1

+
σ

α1

ε.

Thus, the scale parameter σ/α1 is inversely proportional to α1. By choosing a sufficiently small

α1, the principal can make the effective private information sufficiently noisy. This gives us the

following proposition.

Proposition 3 Suppose that agents in group 1 publicly learn about the viability of the PPR and

they do not face any future risk - i.e., θ∗2 = 0. There exists α∗ > 0 such that if α1 < α∗, then agents

will ignore their private information and never attack the PPR.

For group t = 1, Equation (8) captures the belief of threshold agent s∗1 that the PPR will

succeed. The denominator on the LHS captures the influence of PNV, P (θ1 ≥ 0|s = s∗1). For

group 1, h1(x) = x. Imagine that α1 = 1. Then the game is the static regime change game as in

Section 1.1 with the modification that agents learn PNV. Given the precision of private signals τ ,

let G(θ∗1,
√
τ) be the belief of the threshold agent s∗1 that θ1 ≥ θ∗1. Then,

G(θ∗1,
√
τ) :=

θ∗1
F (F−1(θ∗1) +

√
τθ∗1)

. (10)

Figure 3 shows this belief, G(θ∗1,
√
τ) for any threshold θ∗1. In the absence of PNV, for any

possible θ∗1, the threshold agent with private information s∗1(θ∗1) believes that the probability that
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Figure 3: G(θ∗1,
√
τ) when f(x) = (2 + 4x)1(−0.5 ≤ x < 0) + (2− 4x)1(0 ≤ x ≤ 0.5)

the PPR will succeed is P (θ1 ≥ θ∗1|s∗1(θ∗1)) = θ∗1. This is the 45◦ line in Figure 3. In equilibrium,

the threshold agent believes that the PPR will succeed with probability p. Hence, we have a

unique equilibrium θ∗1 = p. When agents learn PNV, the threshold agent’s belief is P (θ1 ≥ θ∗1|θ1 ≥

0, s∗1(θ∗1)) = G(θ∗1,
√
τ), which is a non-monotonic function of θ∗1. As can be seen from Figure 3, if τ

decreases, the curve of G(θ∗1,
√
τ) shifts upwards. When τ is sufficiently small, there is no positive θ∗1

such that G(θ∗1,
√
τ) = p. Thus, θ∗1 = 0 is the unique monotone equilibrium fundamental threshold.

When only α1 share of agents are playing the static regime change game, we can see from

Equation (8), the belief of the threshold agent that the PPR will succeed is

θ∗1
α1

F
(
F−1

(
θ∗1
α1

)
+ α1

√
τ
θ∗1
α1

) = G(
θ∗1
α1

, α1

√
τ). (11)

Although the principal cannot change τ , by choosing a sufficiently small α1 she can make the effective

precision α1

√
τ sufficiently small. This induces the agents to ignore their private information and

follow her recommendation.

2.2.2 Step 2: Maximum Current Risk Across Groups

In this section, we will show that if sufficient diffusion eliminates the current coordination risk in

group 1 (as in Step 1), then it will do so for the later groups as well. Consider any group t and
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suppose that the coordination risk has unraveled after group t - i.e., θ∗t+1 = 0. This implies that

the agents in group t are facing only the current coordination risk. The PNV is endogenously

generated depending on how aggressively agents have attacked the PPR. The effect of this news

on the strategic uncertainty differs across groups. As the game reaches a later group, the agents

learn that the PPR has survived attacks from a larger mass of agents. If agents are not facing

any future risk, in any equilibrium, the agents in later groups will be more optimistic about the

success of the PPR. In this sense, the first group of agents are least influenced by PNV. If the

fundamental strength starts with ht(x), then at t, the fundamental strength that remains is x.

Therefore, ht(x) ≥ x and (ht(x)− x) captures the attack until group (t− 1) when the fundamental

strength starts with ht(x). Imagine that the initial fundamental strength is ht(0) versus ht(x) for

some x > 0. In any monotone equilibrium, there is more attack if the initial strength is ht(0) as

opposed to ht(x). Therefore, ht(x)− x ≤ ht(0)− 0.

Lemma 1 In any possible monotone equilibrium, for all t ∈ {1, 2, . . . , T} and any x ≥ 0, ht(x) −

ht(0) ≤ x.

The result follows directly from the arguments preceding the lemma. Given any equilibrium, the

threshold agent believes that the PPR will succeed with probability (as in Equation (8))

P

(
θt
αt
≥ θ∗t
αt

∣∣∣∣s∗t , θtαt ≥ 0

)
=

θ∗t
αt

F
(
F−1

(
θ∗t
αt

)
+
√
τ(ht(θ∗t )− ht(0))

)
≥

θ∗t
αt

F
(
F−1

(
θ∗t
αt

)
+ αt
√
τ
θ∗t
αt

) , Using Lemma 1.

Substituting G(.) as defined in Equation (11), we get the following inequality

P

(
θt
αt
≥ θ∗t
αt

∣∣∣∣s∗t , θtαt ≥ 0

)
≥ G

(
θ∗t
αt
, αt
√
τ

)
. (12)

Recall that for any threshold x, G(x, αt
√
τ) captures the belief of the threshold agent in group 1

that the PPR will succeed, when there is no future risk and the group size is αt. Thus, for the

same group size αt = α1, if G(x, α1

√
τ) > p for all x, then P (θt/αt ≥ x |s∗t (x), θt/αt ≥ 0) > p for

all x. Therefore, if a small group size can eliminate the current coordination risk in group 1, then
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the same group size eliminates the current coordination risk in later groups as well.

Proposition 4 Suppose that agents in group t publicly learn about the continued viability of the

PPR and that they do not face any future risk - i.e., θ∗t+1 = 0. If αt < α∗ then agents will ignore

their private information and never attack the PPR.

The result follows directly from the arguments made preceding the proposition. This shows that

the inductive argument holds for any group t.

2.2.3 Step 3: Unraveling of Coordination Risk from the End

Proposition 3 says that the inductive argument holds for group 1 if α1 < α∗ and Proposition 4 says

that given the same group size, if the inductive argument holds for group 1, then it also holds for

any t > 1. Given θ∗T+1 = 0, the above two propositions then imply that if αt < α∗ for all t, then

agents in the last group do not attack the PPR. Knowing this, agents in the penultimate group do

not attack the PPR either and so on until group 1. Thus, by sufficiently diffusing the coordination

risk:

1. The principal convinces the agent in any group t that the agents in the subsequent groups

will follow her recommendation and

2. This makes the news of continued viability sufficiently strong to convince the agents in group

t not to attack the PPR.

Consequently, no agent attacks a viable PPR.

2.3 Discussion

We consider a mass of agents who take decisions based on their private information. These agents

would like to coordinate but cannot communicate. If the agents can be assured that other agents are

taking a specific action, then they will take the same action. Through diffusing the coordination

risk, the principal is facilitating this assurance. When the agents learn about the PNV and are

assured that the agents in the subsequent groups will follow the recommendation, they follow the

recommendation as well. The main result shows that a sufficiently diffused policy leads to a unique

equilibrium in which all agents follow the principal’s recommendation and do not attack a viable
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PPR. The unique equilibrium implies that it is not only possible that a viable PPR will succeed

in the end, rather it will always succeed. However, we only claim that this is one possible way to

eliminate the coordination risk. We do not consider a generalized policy space.

The proof exploits the influence of PNV when agents in a group are assured that agents in

subsequent groups will follow the principal’s recommendation - i.e., there is no future risk. This is

possible because from Proposition 2 we know that there is always an equilibrium in which there is no

future risk after some group t. However, if the principal fails to provide such an assurance, then the

actions of agents in subsequent groups depend on the actions of the agents in group t. Given the vast

multiplicity of equilibria, we cannot be certain whether higher diffusion will reduce coordination risk

or θ∗1. Numerically, for p = 0.7, τ = 10 and f(x) = (2+4x)1(−0.5 ≤ x < 0)+(2−4x)1(0 ≤ x ≤ 0.5),

we find that with (T, (α)) = (3, (0.3, 0.35, 0.35)), there is an equilibrium with θ∗1 = 0.5388, while

with (T, (α)) = (4, (0.3, 0.35, 0.05, 0.3)), there is an equilibrium with θ∗1 = 0.5892. Thus, higher

diffusion may lead to an increase in θ∗1. In the Online Appendix, we show the numerical result for

uniform diffusion (T, (α)) where αt = 1/T to illustrate that for a sufficiently diffused policy (T, (α)),

θ∗1 = 0 is the unique equilibrium.

In order to convince the agents not to attack the PPR, the principal needs to overcome two

hurdles. First, agents’ reluctance to favor the PPR which is captured by the payoff parameter, p and

second, the precision of their private information which is captured by τ . Recall that agents do not

attack the PPR if they believe that it will succeed with a probability of at least p = 1/
(

1 + b1−c1
b0−c0

)
.

Suppose that the net benefit from attacking the PPR- (b0 − c0) is higher, or the net benefit from

favoring the PPR- (b1− c1) is lower, then p is higher. Hence, the agents are more reluctant to favor

the PPR. We expect that convincing such agents not to attack the PPR is more difficult. Also, if τ

is higher, we expect that it will be harder to convince the agents to ignore their private information

and follow the principal’s recommendation. The following Corollary confirms this intuition.

Corollary 2 The critical mass α∗ that eliminates the coordination risk is decreasing in p and τ .

If agent’s actions are divisible, then coordination risk can also be diffused through setting a

ceiling on individual attack. Consider a slightly different setup. Suppose that the game lasts

for unit time interval [0, 1]. An agent can partially attack the PPR at any time between [0, 1].

The maximum attack an agent can make is 1. The principal restricts individual attack in any time

interval and hence, restricts the aggregate attack. Consider, for example, the case in which investors
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decide whether to withdraw their investments. The principal sets a limit on how much they can

withdraw in any time interval. Thus, a policy (T, (α1, α2, . . . , αT )) is equivalent to saying that the

principal restricts the maximum withdrawal that an agent can make in the time interval of [0, α1]

to a share α1 of the total funds, with the maximum withdrawal in the interval (α1, α1 + α2] equal

to α2, and so on.

3 Selected Applications

For standard coordination games of regime change, we have shown that the policy of diffusion can

be effective in averting coordination failure. Our theory can be easily applied to many well-known

coordination problems. In this section, we bring our theory to very specific economic environments

to better understand the feasibility and effectiveness of this policy.

3.1 Panic-Based Runs

Consider a borrower trying to persuade her creditors to roll over their debts. If all the debts were

maturing at the same time, then the creditors face the strategic uncertainty whether others can

be convinced to rollover or not. Many viable borrowers may fail to convince the investors to roll

over their debts. Brunnermeier (2009) argues that this coordination risk in maturity mismatch

is one of the main causes of the recent financial crisis. In reality, diffused policies that prevent

creditors running at the same time are commonly observed for financial firms performing liquidity

transformation and thus facing maturity mismatch problems (See He and Xiong (2012)). Choi et al.

(2016) show that corporate bond issuers adopt diversified debt rollovers across maturity dates.15

Suppose a borrower who has adopted an asynchronous debt structure (T, (α)) in which αt share

of short-term debts mature at time t ∈ {1, 2, . . . T} is in distress. In total, there is mass 1 of

creditors - i.e.,
∑T

t=1 αt = 1 - who lend $1 to finance an investment. Assume that, after the long

term project matures, the realized return R is sufficiently high to pay all possible claims. So, the

15In practice, hedge fund managers can lift investor-level gates to limit investors’ redemptions within a certain
period. A common investor-level gate limits redemptions to 25% of an investor’s money each quarter over four
quarters (see “Hedge funds try new way to avoid big redemptions,” by Alistair Barr (June 10, 2010), http://www.
marketwatch.com/story/hedge-funds-try-new-way-to-avoid-big-redemptions-2010-06-10). In the market
of Money Market Mutual Funds (MMMF), the recent Securities and Exchange Commission reform of MMMF in the
U.S. provides fund managers with the ability to set redemption gates within a certain period when a fund’s liquidity
position is not favorable (see http://www.sec.gov/rules/final/2014/33-9616.pdf).
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financial distress ends upon the maturity of long-term investment.

At time 0, the borrower has liquid assets to sustain θ ≥ 0 share of withdrawals. As before, wt

stands for the proportion of time t creditors who decide to withdraw their debt. For convenience,

let us define wt =
∑T

u=t+1 αuwu as the total withdrawal after t and wT = 0. At t, the remaining

liquidity is θt. If θt < 0, then the borrower has already defaulted and the creditors who are yet to

make decisions will get 0 regardless of their actions. If the borrower has not yet defaulted, then

creditors of debts maturing at time t decide whether to withdraw (ai = 0), or roll over the debt

(ai = 1) till maturity of the project. If a creditor withdraws, he gets 1 if θt can sustain the current

withdrawal αtwt. If θt < αtwt, then the borrower defaults at t. For simplicity, we assume that the

long-term investment has no liquidation value before it matures. The withdrawing creditors will

split the liquid asset θt. Thus, for θt ≥ 0, the payoff from withdrawal is

u(0, θt, αtwt, w
t) =

1 if θt ≥ αtwt

θt
αtwt

if θt < αtwt.

On the other hand, if the creditor rolls over until the maturity of the project, then he gets 1+r < R

if the projects succeeds in the end and 0 otherwise.

u(1, θt, αtwt, w
t) =

1 + r if θt ≥ αtwt + wt

0 if θt < αtwt + wt.

This game of dynamic run demonstrates two important differences in the payoff structure com-

pared to Section 1.2. First, although the payoff from rollover only depends on whether the borrower

defaults or not in the end and thus, depends on depositors’ current and future actions (αtwt +wt),

the payoff from withdrawing depends only on the current actions (αtwt). This asymmetry in payoff

creates a higher incentive for depositors to withdraw. Second, when the borrower defaults, the

payoff from withdrawing is not constant but dependent on the level of aggregate withdrawal as well

as the residual fundamental.16 In the following proposition we show that despite these differences

16Morris and Shin (2004) consider a similar debt run game in which the creditors make their decisions simulta-
neously. The payoff structure in this model is similar to the one in Goldstein and Pauzner (2005), where creditors’
payoff from withdrawing is negatively dependent on aggregate withdrawal. Goldstein and Pauzner (2005) show
that the global game perturbation uniquely selects a monotone equilibrium even with the lack of global strategic
complementarity.
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a sufficiently asynchronous debt structure makes a borrower immune to panic-based runs.

Proposition 5 There exists some α∗ > 0 such that if the debt structure (T, (α)) satisfies αt < α∗

for all t ∈ {1, 2, . . . , T}, then there is no panic-based debt run - i.e., θ∗1 = 0.

We extend our result to incorporate any bounded payoff with strategic complementarity. Since,

under sufficient diffusion, future risk is eliminated (wt = 0), the payoff from withdrawing and rolling

over for time t creditors depends only on whether the borrower can successfully sustain the current

withdrawals. Thus, the asymmetric payoff structure is compatible with our theory. Different from

our benchmark model, one may also be interested in the creditors’ decision to lend in the first place.

Given that sufficient diffusion eliminates the coordination risk, the creditors have more incentive

to lend to the borrower. However, if the borrower undertakes such policy only in times of distress,

this argument does not apply.

3.2 Tax Havens

Tax haven countries attract offshore investments through nominal taxation and secrecy of tax evad-

ing investors. Such tax sheltering activities pose a serious challenge to other jurisdictions. To

counter this loss of valuable public revenue, other sovereign countries and supranational organiza-

tions, e.g. Organization for Economic Cooperation and Development(OECD) have initiated several

policies to fight against the tax haven. The international pressure makes it difficult for tax havens

to maintain the status quo.

Following Konrad and Stolper (2016), this can be captured in a regime change game. A con-

tinuum of opportunistic foreign investors decide whether to move their capital to this tax haven

country (ai = 0) or not (ai = 1). Such a move is profitable only if the tax haven can maintain the

secrecy regime (regime 0). However, if the tax haven does not get sufficient investment (w), then

it will not be generating enough profit to withstand the international pressure (θ). Following the

standard global game argument, we can say that the tax haven country abandons the status quo and

exchanges information with other countries if and only if the international pressure is sufficiently

high (θ ≥ θ∗).

Imagine an organization like OECD as our principal. Suppose this organization checks in every

α∗ interval of time whether a transparent regime is still viable. That is, whether the tax haven
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country is already making sufficient profit that it will never abandon the secrecy regime despite

no further investment. If the transparent regime continues to be viable, the organization continues

exerting pressure and abandons otherwise. Following such a policy, our principal can successfully

convince all opportunistic investors not to invest their capital in the tax haven country and a viable

transparent regime can be implemented regardless of the international pressure (however small).

On the other hand, if the tax haven country is our principal, she can adopt the opposite policy.

She checks in every α∗ interval of time whether she can still maintain the secrecy regime, otherwise

abandon the status quo. Following a sufficiently diffused policy, the tax haven country can always

defend a viable secrecy regime regardless of the international pressure (however large).

3.3 Currency Attack

The People’s Bank of China imposes a ceiling on the conversion of Renminbi to foreign exchange as-

sets by individuals or institutions.17 China’s policies have been successful in maintaining a relatively

stable exchange rate over a period of decades. From the perspective of deterring currency attacks,

this paper provides a rationale for such a policy. Similar to Morris and Shin (1998), consider a mass

of speculative attackers deciding whether to convert the domestic currency into foreign currency

(ai = 0) or not (ai = 1). If the central bank does not have enough foreign exchange reserves (θ) to

withstand the speculative attack (w), then the central bank cannot maintain the current exchange

rate and has to devalue the domestic currency. If the currency is devalued, then the attackers can

buy back the domestic currency later at a lower rate and make a profit. However, if the central

bank does not devalue, then attacking the currency is costly. Thus, speculators attack the domestic

currency when they believe other speculators will do the same. When a ceiling on currency con-

version is imposed, the fact that the domestic currency has not been devalued yet works as PNV.

If the ceiling is sufficiently small, then PNV convinces the speculators that there will be no future

attack and they decide not to attack.

17For example, Chinese residents may purchase up to $50, 000 worth of foreign exchange per year (See Neely
(2017)).
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3.4 Network Externality

When a new technology or new standard arrives, it is not likely to get adopted en masse by firms

in an industry. Each firm gets higher benefit from adopting the new technology when other firms

also adopt the same. This is referred to as “network externality” (See Katz and Shapiro (1986)

and Farrell and Saloner (1985)). For example, after Automated Clearing House (ACH) electronic

payments system was introduced, individual banks adopted it over time. Gowrisankaran and Stavins

(2004) identify the extent of network externalities using a quarterly panel data set on individual

bank adoption and usage of ACH. If a principal wants a viable new standard to be successfully

adopted, she can approach the firms in small groups. If the firms know that the principal does

not try to persuade them to adopt a non-viable new standard, they will follow the principal’s

recommendation and adopt the new standard.

3.5 Divide and Rule

Divide and Rule is a common political strategy that rulers use to dissuade agents from revolting.

By making a division, the ruler convinces one group that the other group is not going to attack

the incumbent regime. This stops either group from attacking. This policy has a general appeal

for understanding strategic uncertainty (See Segal (2003)) beyond the specific problem of a ruler

trying to remain in power. Acemoglu et al. (2004) suggest a division rule of promising transfers

to the non-attackers by taxing the attackers. This policy, although simple and appealing, may not

always be feasible in the general context. For example, imagine a political regime change game

similar to Edmond (2013). Suppose that an alternative leader is trying to persuade the agents to

revolt against the status quo. It does not seem likely that she can devise a rule to reward the

attackers and punish the agents who do not attack. Or, consider an organizer persuading people to

attend a conference or vote on a specific issue. The division rule that we propose does not need the

principal to have the authority to change payoffs. She only informs the subsequent groups about the

survival of PPR. For a small group, such news can be overwhelming to convince them not to attack

the PPR, provided they believe that the subsequent groups are not attacking. Thus, a sufficiently

diffused policy guarantees that the last group does not attack and so does the penultimate group

and so on. Moriya and Yamashita (2015) and Inostroza and Pavan (2017) argue that a principal

may achieve a better outcome by asymmetrically disclosing information. Although our principal
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discloses the information publicly, the asymmetry follows from the sequentiality and irreversibility

of actions. An agent in group t cannot act on the information disclosed at a later date t′ > t.

4 Extensions

4.1 Accumulated Information

Suppose that agents receive private information regarding the past attacks as the principal diffuses

the coordination risk. One can suspect that agents will no longer ignore their private information

as it becomes more informative. We argue that our main result is robust to such accumulated in-

formation. To incorporate such additional information in a tractable way, we will assume that F is

normal distribution and the prior is uniform over the real line. Although unconditional probabilities

are not well defined for such a distribution, we will assume that the principal minimizes the coor-

dination risk by minimizing the threshold θ∗1. After group (t − 1) agents make their decisions, the

rest of the agents privately receive noisy information st about the proportion of them that attacked

- i.e., wt−1, where

st = Φ−1(wt−1) +
1
√
τt
εt.

We will assume that εt is i.i.d standard normal. This particular functional form, first suggested by

Dasgupta (2007), is assumed for tractability.

We focus on monotone equilibrium. Note that agents in group t receive multiple private signals

- i.e., s1, s2, . . . st. Let ζt(s1, s2, . . . st) be a sufficient statistic for the aggregate information. The

monotone equilibrium is characterized by the thresholds (θ∗t , ζ
∗
t ) - i.e., agents in group t attack the

preferred regime iff ζt < ζ∗t , and the regime survives all the attacks from t onwards if θt ≥ θ∗t .

Under this Gaussian error structure θ|(s1, s2, . . . st) ∼ N(ζt, 1/zt). The sufficient statistic at t,

ζt(s1, s2, . . . st), and the precision of the aggregate information at t, zt, can be recursively defined

as ζ1(s1) = s1, z1 = τ1, while,

ζt+1 =
zt

zt + τt+1zt
ζt +

τt+1zt
zt + τt+1zt

(
ζ∗t −

1
√
zt
st+1

)
zt+1 =zt(1 + τt+1).

Proposition 6 In the game with agents receiving noisy private information about past attacks, if
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the precision of the aggregate information - zT does not converge to infinity at a faster rate than T 2

- i.e., limT→∞
√
zT/T → 0, then sufficient diffusion eliminates all the coordination risk.

We have mentioned before that Huang (2017) shows a similar unraveling result when a principal

has dynamic reputation concern. The author also shows that the unraveling does not hold if the

speculators learn at a faster speed than usual. However, unlike the dynamic setup in Huang (2017),

this game is a one-shot game for the principal. The dynamics in this model come from the partition

of the mass of agents. Since the mass of agents is fixed, and the source of the additional information

is the past action of a fraction of these mass of agents, it is reasonable to think that there is some

upper bound to the precision of private information. Then the above limiting condition is surely

satisfied. Consider two specific examples: (1) τt = γαt−1 − 1 or (2) τt = αt−1 × β. Both these

examples illustrate that if agents learn about past attacks from a smaller share of agents, then the

precision of such a signal is less. It can be easily checked that the limiting condition holds. Thus,

sufficient diffusion eliminates the coordination risk.

4.2 Informative Prior

Throughout this paper, we assume that agents have an uninformative prior. If agents have some

informative prior belief about θ1, then this could weaken the impact of PNV. To posit this issue

in a tractable way, we consider a Gaussian world. We show that the main result is robust to such

changes.

Proposition 7 In the game with a Guassian prior θ ∼ N(θ0, 1/τ0) and private information s =

θ + ε/
√
τ1, where ε ∼ N(0, 1), sufficient diffusion eliminates all the coordination risk.

In the absence of PNV, Morris and Shin (2004) and Hellwig (2002) (See Theorem 1 in either

paper) show that if τ0/
√
τ1 is sufficiently small, then there is a unique equilibrium. Recall that by

diffusing the coordination risk, we scale down the precision of the private information τ to α2τ .

This also applies to the prior belief in the sense that τ0 is scaled down to α2τ0. Therefore, as α

becomes small, τ0/
√
τ1 will eventually become sufficiently small. Thus, under sufficient diffusion, the

uniqueness of equilibrium condition is satisfied. However, since agents learn PNV, a very different

equilibrium is selected.
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5 Conclusion

This paper proposes a simple policy, called diffusing coordination risk, to eliminate the strategic

uncertainty in a global game of regime change. A principal diffuses the coordination risk by making a

partition of the mass of agents. She recommends the agents in each group not to attack her preferred

regime in a chronological fashion. However, she abandons her preferred regime when she realizes

that it cannot succeed. We show that when the principal sufficiently diffuses the coordination risk,

agents ignore their private information and follow the principal’s recommendation.

Conventional wisdom suggests that sequential moves can help agents to coordinate better. How-

ever, the novelty of the result is that all the coordination risk can be eliminated. From a method-

ological perspective, our paper develops an inductive argument to show that the coordination risk

unravels from the end. Note that this is not a standard backward induction argument since we

model a world with incomplete information.

From an applied perspective, we show that our policy can be easily adopted for addressing

prevalent coordination problems such as eliminating the risk of debt run, currency crisis etc. Keep-

ing this in mind, we extend our model to accommodate certain features that were absent in the

benchmark model but may be important for applications. The scope of these extensions, however,

are limited to changes in payoff structure, additional private information about past decisions or

prior belief. Within the scope of this paper we refrain from discussing the effectiveness of limited

diffusion (if diffusion is costly), heterogeneity (which agents should move early?), or the possible

signaling effect of the policy (such as when the borrower adopts this policy under distress). We

think these are promising extensions for future research.

Appendix

Appendix A: Monotone Equilibrium

Proposition 1 is an existing result, and its proof can be found in Morris and Shin (2003). For

completeness, we reproduce the proof in the Online Appendix.

Proof of Proposition 2 An agent in group t who receives private information s about θ = θ1

and learns PNV, believes that the PPR will succeed with probability P (θt ≥ θ∗t |s, θt ≥ 0). The
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residual strength θt evolves endogenously. For any threshold θ∗1, ht(.) maps this residual strength

to the initial strength θ1. By definition ht(θ
∗
t ) = θ∗1. Thus,

P (θt ≥ θ∗t |s, θt ≥ 0) = P (θ1 ≥ ht(θ
∗
t )|s, θ1 ≥ ht(0)) =

F (
√
τ(s− ht(θ∗t )))

F (
√
τ(s− ht(0)))

. (13)

Given the equilibrium threshold θ∗1, and the resulting ht(.), let s∗t (θ
∗
1) be the threshold of private

information such that agents in group t do not attack the preferred regime if and only if s ≥ s∗t (θ
∗
1).

If agents in group t are following this monotone strategy, then for θ1 ≥ θ∗1 or equivalently for θt ≥ θ∗t ,

the aggregate attack from group t will leave sufficient residual strength to survive thereafter - i.e.,

θt+1 ≥ θ∗t+1. Thus,

θt − αtwt(θ1) ≥ θ∗t+1 iff θ1 ≥ θ∗1,

⇒ wt(θ
∗
1) = F (

√
τ(s∗t (θ

∗
1)− θ∗1)) = (θ∗t − θ∗t+1)/αt.

Hence, the threshold signal s∗t must satisfy Equation (7):

s∗t (θ
∗
1) = θ∗1 +

1√
τ
F−1

(
θ∗t − θ∗t+1

αt

)
.

Substituting s∗t (θ
∗
1) into the Equation (13), we have

P (θt ≥ θ∗t |s∗t (θ∗1), θt ≥ 0) =

θ∗t−θ∗t+1

αt

F
(√

τ(θ∗1 − ht(0)) + F−1
(
θ∗t−θ∗t+1

αt

)) .
Recall that an agent does not attack the PPR iff he believes that the PPR will succeed with a

probability at least p.

At any time t, by definition, θ∗t ∈ [θ∗t+1, θ
∗
t+1 +αt]. Given PNV at t, there is always an equilibrium

in which, θ∗t = θ∗t+1 = . . . = θ∗T = 0. For other possible equilibria, we can consider the following three

cases: 1. P (θt ≥ θ∗t |s∗t (θ∗1), θt ≥ 0) > p for all θ∗t ∈ [θ∗t+1, θ
∗
t+1+αt]; 2. P (θt ≥ θ∗t |s∗t (θ∗1), θt ≥ 0) < p for

all θ∗t ∈ [θ∗t+1, θ
∗
t+1 +αt]; 3. There exists θ∗t ∈ [θ∗t+1, θ

∗
t+1 +αt] such that P (θt ≥ θ∗t |s∗t (θ∗1), θt ≥ 0) = p.

Case 1: This case can only occur when θ∗t = θ∗t+1 = θ∗t+2 = ... = θ∗T = 0.

Proof. If P (θt ≥ θ∗t |s∗t (θ∗1), θt ≥ 0) > p for all θ∗t ∈ [θ∗t+1, θ
∗
t+1 + αt], agents at time t will favor

the PPR irrespective of their information. Thus, θ∗t = θ∗t+1, and s∗t = θ∗1 − 1/(2
√
τ) (from Equation
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(7)). Suppose that θ∗t = θ∗t+1 > 0, then

P (θt ≥ θ∗t |s∗t (θ∗1), θt ≥ 0) =
0

F (
√
τ(ht(θ∗t )− ht(0))− 1

2
)

= 0 < p,

which contradicts P (θt ≥ θ∗t |s∗t (θ∗1), θt ≥ 0) > p. Thus, θ∗t = θ∗t+1 = 0. This implies θ∗t = θ∗t+1 =

θ∗t+2 = ... = θ∗T = 0.

Case 2: This case cannot be an equilibrium.

Proof. If P (θt ≥ θ∗t |s∗t (θ∗1), θt ≥ 0) < p for all θ∗t ∈ [θ∗t+1, θ
∗
t+1 + αt], then all agents will attack

the preferred regime, irrespective of their information. Thus, θ∗t = θ∗t+1 +αt. Since ht(θ
∗
t )−ht(0) ≥ 0

as θ∗t ∈ [0, 1] and the function F has support in [−1/2, 1/2], we have

P (θt ≥ θ∗t |s∗t (θ∗1), θt ≥ 0) =
1

F (
√
τ(ht(θ∗t )− ht(0)) + 1

2
)

= 1 > p,

which contradicts P (θt ≥ θ∗t |s∗t (θ∗1, θ∗t+1), θt ≥ 0) < p. Proposition 2 presents all possible monotone

equilibria in Case 1 and Case 2.

Case 3: If P (θt ≥ θ∗t |s∗t (θ∗1), θt ≥ 0) = p has an interior solution θ∗t , then this immediately

implies the recursive relation (6) holds true. Recall that θ∗t = θ∗t+1 = . . . = θ∗T = 0 is always an

equilibrium and it is consistent with this case.

Proof of Corollary 1 When the game reaches time t and the PPR is viable, - i.e., θ1 ≥ ht(0)

and there is no current risk for group t, - i.e. ht(0) = ht+1(0), no one in group t attacks PPR even if

θt = 0. So, we have s∗t ≤ ht(0)− 1/(2
√
τ). From Equation (7), we know that s∗t ≥ ht(0)− 1/(2

√
τ)

because θ∗1 = ht(θ
∗
t ) ≥ ht(0) and θ∗t ≥ θ∗t+1.

The above two inequalities of s∗t tell us that s∗t = ht(0) − 1/(2
√
τ), θ∗1 = ht(0) and θ∗t = θ∗t+1.

Since θ∗1 = ht(θ
∗
t ) and ht is a nondecreasing function, we know that θ∗t+1 = θ∗t = 0. This means that

there is no future risk for group t agents.�

Appendix B: Main result

Proof of Proposition 3 We first consider a static regime change game as in Section 1.1. It

is publicly known that the PPR is viable - i.e., θ ≥ 0. We show that in this static game, as private
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information becomes sufficiently noisy, the unique rationalizable strategy for any agent is to ignore

his private information and never attack the PPR (Lemma 2). Then in a dynamic game without

future risk for the first group, we show that if α1 becomes sufficiently small, the effective private

information becomes sufficiently noisy and thus there is no coordination risk among this group of

agents.

A Static Game with PNV

Corollary 3 Multiple equilibria exist in a static regime change game with public information of

viability. In particular, there is a monotone equilibrium (θ∗, s∗) such that either θ∗ = 0 and s∗ =

−1/(2
√
τ) or the following conditions are satisfied:

G(θ∗,
√
τ) = p, and s∗(θ∗) = θ∗ +

1√
τ
F−1(θ∗).

Proof. This is only a special case (T = 1) of Proposition 2.

Let (θ∗h, s∗h) be the worst monotone equilibrium in the sense that it has the maximum coordi-

nation risk. Then,

θ∗h := max{θ ∈ [0, 1]|G(θ,
√
τ) ≤ p}. (14)

Lemma 2 Suppose that agents have uninformative priors, F is log-concave and it is publicly known

that θ ≥ 0. Then, there is a threshold s̄∞ such that for s ≥ s̄∞, attacking the preferred regime is not

rationalizable. Consequently, there is θ̄∞ such that the preferred regime succeeds whenever θ ≥ θ̄∞.

Furthermore :

1. (θ̄∞, s̄∞) is a monotone equilibrium, and θ̄∞ = θ∗h.

2. There exists τ ∗ such that if τ < τ ∗, the monotone equilibrium (θ̄∞ = 0, s̄∞ = −1/(2
√
τ)) is

the unique equilibrium.

Proof. The proof is built in three steps. In step 1, we eliminate the dominated strategies

iteratively. In step 2, we argue that the worst possible undominated strategy constitutes a monotone

equilibrium. In Step 3, we show that for sufficiently small τ , the unique rationalizable strategy is

not to attack, regardless of the private information.

The first two steps are based on the usual global game argument of iterated elimination of strictly

dominated strategies. The only difference from the standard argument is the influence of the public
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news of continued viability. It eliminates the lower dominance region (ai(s) = 0 regardless of others’

decisions) and potentially generates multiple monotone equilibria. We will introduce the necessary

notations and describe the results from these two steps but leave the formal proof to the Online

Appendix.

Step 1: Iterated Elimination of Never Best Responses

After n rounds of elimination of never-best responses, let s̄n be such that, in the worst possible

scenario, an agent with public information θ ≥ 0 does not attack the PPR only when s ≥ s̄n.

Let θ̄n be such that, in the worst possible scenario, the PPR succeeds only when θ ≥ θ̄n. Either

s̄n = −1/(2
√
τ) and θ̄n = 0, or we recursively define s̄n+1 as,

P (θ ≥ θ̄n|s̄n+1, θ ≥ 0) =
F (
√
τ(s̄n+1 − θ̄n))

F (
√
τ s̄n+1)

= p (15)

or, s̄n+1 = −1/(2
√
τ) if F (

√
τ(s̄n+1−θ̄n))/F (

√
τ s̄n+1) > p for all s̄n+1 ∈ [s, s̄], where s = θ−1/(2

√
τ)

and s = θ + 1/(2
√
τ). Also, define θ̄n+1 as

P (s < s̄n+1|θ̄n+1) = F (
√
τ(s̄n+1 − θ̄n+1)) = θ̄n+1. (16)

If θ̄n < θ̄n−1, through Equation (15), we have s̄n+1 < s̄n. From Equation (16), we have θ̄n+1 < θ̄n.

Since θ̄1 < θ̄0 (see Online Appendix), by induction, we get a decreasing sequence {θ̄n}∞n=0. Let

θ̄∞ = limn→∞ θ̄n. Note that either θ̄∞ = 0 or θ̄∞ > 0. For any given τ > 0, if θ̄∞ > 0, then it must

satisfy

lim
n→∞

F (
√
τ(θ̄n+1 − θ̄n) + F−1(θ̄n+1))

F (
√
τ θ̄n+1 + F−1(θ̄n+1))

=
θ̄∞

F (
√
τ θ̄∞ + F−1(θ̄∞))

= G(θ̄∞,
√
τ) = p, (17)

where G(.) is as defined in Equation (10).

Step 2: The Worst Possible Equilibrium

In step 1 we iteratively eliminate ai(s) = 0 for any s ≥ s∞. Accordingly, we find a threshold

θ∞ such that the PPR surely succeeds whenever θ ≥ θ∞. In step 2, we show that this threshold is

identical to the worst monotone equilibrium threshold θ∗h ≡ max{θ ∈ [0, 1]|G(θ,
√
τ) ≤ p}.

Step 3: Unique rationalizable strategy
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Let us define

x(τ) ≡ arg min
x∈[0,1]

G(x,
√
τ)

and

y(τ) ≡ G(x(τ),
√
τ). (18)

Following theorem of maximum, we know y(τ) is well defined and is continuous in τ . Now for

all τ1 < τ2, we have y(τ1) = G(x(τ1),
√
τ1) > G(x(τ1),

√
τ2) > G(x(τ2),

√
τ2) = y(τ2). The first

inequality comes from the fact that G(x,
√
τ) is decreasing in τ , and the second follows the definition

of x(τ). Hence, y(τ) is decreasing with τ. Moreover, y(0) = limτ→0 y(τ) = 1 > p. Define

τ ∗ ≡ sup{τ |y(τ) ≥ p}. (19)

If y(∞) = limτ→∞ y(τ) < p, then for all τ < τ ∗ and all x ∈ [0, 1], we have G(x,
√
τ) > p. Otherwise,

if y(∞) ≥ p, then τ ∗ = ∞. Thus, if τ < τ ∗, there is no θ̄∞ > 0 such that G(θ̄∞, τ) = p. Hence,

θ̄∞ = 0 is the only possible limit. This implies s̄∞ = −1/(2
√
τ). Note that, if s < −1/(2

√
τ),

the unique rationalizable action is to attack the preferred regime, and when θ ≥ 0 agent will never

receive such a signal. Also, when s̄∞ = −1/(2
√
τ) is the only possible limit, it means attacking the

preferred regime for any s ≥ −1/(2
√
τ) has been eliminated as never-best response. Therefore, the

unique rationalizable strategy is not to attack the PPR. This is the unique equilibrium in which

agents play monotone strategies. This implies that, when τ is sufficiently small, the preferred regime

will succeed whenever θ ≥ 0.

A Dynamic Game without Future Risk

Let us assume that θ∗2 = 0. For the first group of agents, if there is no future risk, then the effective

fundamental strength is θ1/α1 and the effective private information is s/α1 = θ1/α1 + ε/(α1

√
τ).

Let θ∗1/α1 be the equilibrium threshold. Then the threshold signal must satisfy

P

(
s

α1

<
s∗1
α1

∣∣∣∣ θ1

α1

=
θ∗1
α1

)
=
θ∗1
α1

Hence, s∗1/α1 = θ∗1/α1 + F−1(θ∗1/α1)/(α1

√
τ). Therefore, the threshold agent believes that the

preferred regime will succeed with probability G(θ∗1/α1, α1

√
τ). If α1 <

√
τ ∗/
√
τ ≡ α∗ (τ ∗ as
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defined in Equation (19)), then from Lemma 2, we know that no agent will attack the PPR and

there is no current risk for agents in group 1. �

Proof of Lemma 1 By definition,

ψt−1(ht(x)) = ht(x)−
t−1∑
u=1

αuF (
√
τ(s∗u − ht(x))) = x.

Therefore, ht(x)−ht(0)− (
∑t−1

u=1 αu(F (
√
τ(s∗u−ht(x)))−F (

√
τ(s∗u−ht(0))))) = x−0. Since ht is a

nondecreasing function, we have ht(x) ≥ ht(0). Thus, F (
√
τ(s∗u − ht(x)))− F (

√
τ(s∗u − ht(0))) < 0

for all u ∈ {1, 2, ..., t− 1}. Hence, ht(x)− ht(0) ≤ x− 0. �

Proof of Proposition 4 Given no future risk - i.e., θ∗t+1 = 0, for any θ∗t /αt = x, we have

shown (See Equation (12)) that

P

(
θt
αt
≥ x

∣∣∣∣s∗t (x),
θt
αt
≥ 0

)
≥ G

(
x, αt
√
τ
)
.

The above inequality follows from Lemma 1.

For the same group size αt = α1, if G(x, α1) > p for all x, then P

(
θt/αt ≥ x

∣∣∣∣s∗t (x), θt/αt ≥ 0

)
>

p for all x. From Proposition 3 we know that if α1 < α∗, then G(x, α1) > p for all x. Therefore,

if αt < α∗, then P

(
θt/αt ≥ x

∣∣∣∣s∗t (x), θt/αt ≥ 0

)
> p for all x. From Case 1 of Proposition 2, it

follows that θ∗t = 0 and s∗t = ht(0) − 1/(2
√
τ). Thus, no agent in group t attacks the PPR if the

PPR is viable when the game reaches group t. �

Proof of Theorem 1 Agents in group T face no future risk, hence θ∗T+1 = 0. If αt < α∗ for

all t = 1, 2 . . . T , then from Proposition 4 it follows that θ∗T = 0. Thus, agents in group (T − 1)

do not face any future risk. Using Proposition 4 again we can show that θ∗T−1 = 0. This continues

until group 1. Thus, the coordination risk unravels from the end. �

Proof of Corollary 2 Recall that τ ∗ ≡ sup{τ |y(τ) ≥ p} and α∗ =
√
τ ∗/
√
τ (See Proposition

3). Hence, surely α∗ is decreasing in τ . Also recall that y(τ) as defined in Equation (18) is decreasing

in τ (See step 3 in Lemma 2). Therefore, τ ∗ and consequently α∗ are decreasing in p. �
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Appendix C: Application: Debt Run

Proof of Proposition 5 We will prove this Proposition in two steps. First, we prove that

the conclusion of Theorem 1 holds for a more general payoff structure . Then, we show that the

conclusion of Theorem 1 holds when agents are paid immediately after they attack the preferred

regime and that this payoff only depends on whether the preferred regime can withstand the attack

from the current group. This is precisely Proposition 5.

Step 1: We show that the conclusion of Theorem 1 holds for a general payoff structure satis-

fying Assumption 1 below. The payoff structure of dynamic panic-based run is a special case.

Suppose that at time t ∈ {1, 2, . . . , T} of the diffused coordination risk model, agent i’s payoff

u depends on her action ait, the current attack from group t αtwt, the future aggregate attack

wt ≡
∑T

u=t+1 αuwu and the residual fundamental strength θt as follows:

u(ait = 1, θt, αtwt, w
t) =

b1(θt, αtwt, w
t) if θt ≥ αtwt + wt

c0(θt, αtwt, w
t) if θt < αtwt + wt

and

u(ait = 0, θt, αtwt, w
t) =

c1(θt, αtwt, w
t) if θt ≥ αtwt + wt

b0(θt, αtwt, w
t) if θt < αtwt + wt,

where wT+1 = wT = 0. Suppose, further, that u has the properties detailed in Assumption 1.

Assumption 1 The payoff has the following properties:

1. (Complementarity) ū(θt, αtwt, w
t) ≡ b1(θt, αtwt, w

t)−c1(θt, αtwt, w
t) > 0 and u(θt, αtwt, w

t) ≡

c0(θt, αtwt, w
t)− b0(θt, αtwt, w

t) < 0.

2. (Boundedness) 0 < n < ū(.) < n̄ and 0 < m < −u(.) < m̄, where m, m̄, n and n̄ are

constants.

Proof. This step is similar to the proof in Theorem 1 except for this more general payoff

structure satisfying Assumption 1. Let {θ∗t , s∗t}Tt=1 be the equilibrium thresholds. The definition

of monotone equilibrium is similar to that in Proposition 2. Let H(s, s∗T ) be the payoff difference
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between attacking and not attacking the preferred regime, when the agent receives private infor-

mation s, public information θT ≥ 0 and expects other agents at T follow the threshold rule s∗T .

Hence,

H(s, s∗T ) ≡
ˆ
θ≥hT (θ∗T )

ū(ψT−1(θ), αTwT (θ), wT = 0)dF (θ|s)

+

ˆ
θ<hT (θ∗T )

u(ψT−1(θ), αTwT (θ), wT = 0)dF (θ|s).
(20)

Note that θT = ψT−1(θ) and θ = hT (θT ) as we have defined in the main paper. The agent who

receives the threshold signal s∗T believes that wT is distributed as follows:

P (wT ≤ k|s∗T , θT ≥ 0) = P

(
F
(√

τ(s∗T − θ)
)
≤ k

∣∣∣∣s∗T , θ ≥ hT (0)

)
=
P (θ ≥ s∗T − 1√

τ
F−1(k)|s∗T )

P (θ ≥ hT (0)|s∗T )
=

k

F (
√
τ(s∗T − hT (0)))

.

Let v(wT , s
∗
T ) represent the fundamental strength θ such that the current aggregate attack is equal

to wT when agents at time T are following the threshold strategy s∗T . Substituting θ by v(wT , s
∗
T ) ≡

s∗T − F−1(wT )/
√
τ , we can write H(s∗T , s

∗
T ) (as an integral of wT ) as follows:

H(s∗T , s
∗
T ) =

1

F (
√
τ(s∗T − hT (0)))

ˆ θ∗T
αT

0

ū(ψT−1(v(wT , s
∗
T )), αTwT , 0)dwT

+
1

F (
√
τ(s∗T − hT (0)))

ˆ F(
√
τ(s∗T−hT (0)))

θ∗
T
αT

u(ψT−1(v(wT , s
∗
T )), αTwT , 0)dwT

Next, we show that when αT is sufficiently small, H(s∗T , s
∗
T ) > 0 for any possible equilibrium

path (θ∗t )
T−1
t=1 , and (s∗T , θ

∗
T ) satisfying s∗T = h∗T (θT ) + F−1(θ∗T/αT )/

√
τ . Replacing θ∗T/αT by

F (
√
τ(s∗T − hT (θ∗T ))) in H(s∗T , s

∗
T ), we have
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H(s∗T , s
∗
T ) =

1

F (
√
τ(s∗T − hT (0)))

ˆ F(
√
τ(s∗T−hT (θ∗T )))

0

ū(ψT−1(v(wT , s
∗
T )), αTwT , 0)dwT

+
1

F (
√
τ(s∗T − hT (0)))

ˆ F(
√
τ(s∗T−hT (0)))

F(
√
τ(s∗T−hT (θ∗T )))

u(ψT−1(v(wT , s
∗
T )), αTwT , 0)dwT

>
1

F (
√
τ(s∗T − hT (0)))

(
F
(√

τ(s∗T − hT (θ∗T ))
)
× n

)
+

1

F (
√
τ(s∗T − hT (0)))

([
F
(√

τ(s∗T − hT (0))
)
− F

(√
τ(s∗T − hT (θ∗T ))

)]
× (−m̄)

)
= (n+ m̄)

(
F (
√
τ(s∗T − hT (θ∗T )))

F (
√
τ(s∗T − hT (0)))

− m̄

n+ m̄

)
.

We want to show that
F(
√
τ(s∗T−hT (θ∗T )))

F(
√
τ(s∗T−hT (0)))

> m̄
n+m̄

independent of the equilibrium path (θ∗t )
T−1
t=1 for all

possible θ∗T and s∗T . Applying the inequality in ht(θ
∗
t )− ht(0) ≤ θ∗t (Lemma 1) and replacing s∗T by

s∗T = hT (θ∗T ) + F−1(θ∗T/αT )/
√
τ , we have

F (
√
τ(s∗T − hT (θ∗T )))

F (
√
τ(s∗T − hT (0)))

=

θ∗T
αT

F (
√
τ(hT (θ∗T )− hT (0)) + F−1(

θ∗T
αT

))

≥
θ∗T
αT

F (αT
√
τ
θ∗T
αT

+ F−1(
θ∗T
αT

))

=G(
θ∗T
αT

, αT
√
τ).

Thus, it is sufficient to show that G(θ∗T/αT , αT
√
τ) > m̄/(n + m̄) for all possible θ∗T . This follows

directly from the proof of Lemma 2.

Given the above inequality, we can then say that there exists α∗ such that for any αT < α∗, the

only possible equilibrium is that creditors will ignore their private information and never withdraw

at T . Hence, θ∗T = 0 is the unique equilibrium, regardless of how agents in the prior periods attacked

the preferred regime (the equilibrium specification ht(.)). The rest of the argument is as in Theorem

1.

Step 2: The final step of Proposition 5
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Proof. The payoff structure under debt run is slightly different than what we consider in

the above steps. While in the above steps agents get paid in the end after all others make their

decisions, in the debt run case, agents get paid immediately if they attack the preferred regime

(or make withdrawals). Whether the agent gets b0 or c1 depends on θt < (≥)αtwt but not on

θt < (≥)αtwt +wt. However, since wT = 0, the subgame in period T is exactly the same as the one

in Step 1. We know that when αT is sufficiently small, θ∗T = 0 is the unique equilibrium fundamental

threshold, which is independent of the equilibrium path (θ∗t )
T−1
t=1 . Therefore, wT−1 = wT = 0. The

subgame in period T − 1 is exactly the same as the case when agents receive payoff at the end since

wT = 0. Repeating this argument for t < T − 1, we can obtain this unique equilibrium, θ∗1 = 0 by

restricting αt < α∗ for all t ∈ {1, 2, ..., T}.

�

Appendix D: Extensions

Proof of Proposition 6 Consider agents in group 1. An agent who receives private signal

s1 believes that θ1|s1 ∼ N(s1, 1/z1), where z1 = τ1 = τ . Given the true state θ1, the private signal

s1|θ1 ∼ N(θ1, 1/τ1). In a monotone equilibrium, agents in group 1 attack the preferred regime if

s1 < s∗1. Thus, the sufficient statistic ζ1 = s1 and the threshold ζ∗1 = s∗1. Given the fundamental

strength θ1, the aggregate attack at t = 1 is w1 = Φ(
√
z1(ζ∗1 − θ1)).

The agents in group 2 receive additional private information :

s2 = Φ−1(w1) +
1
√
τ2

ε2 = Φ−1 (Φ(
√
z1(ζ∗1 − θ1))) +

1
√
τ2

ε2 =
√
z1(ζ∗1 − θ1) +

1
√
τ2

ε2.

This can be thought of as
(
ζ∗1 − s2/

√
z1

)
= θ1−ε2/

√
τ2z1 - i.e.,

(
ζ∗1 − s2/

√
z1

)
is a noisy information

about θ1 with precision τ2z1. Therefore, the updated belief is

θ1|s1, s2 ∼ N

(
z1

z1 + τ2z1

ζ1 +
τ2z1

z1 + τ2z1

(
ζ∗1 −

1
√
z1

s2

)
,

1

z2

)
,

where z2 = z1+τ2z1 = τ1(1+τ2). Thus, the sufficient statistic is ζ2 = z1
z1+τ2z1

ζ1+ τ2z1
z1+τ2z1

(
ζ∗1 − s2/

√
z1

)
and ζ2|θ1 ∼ N(θ1, 1/z2). In the monotone equilibrium, agents in group 2 attack the preferred regime

iff ζ2 < ζ∗2 and thus, w2 = Φ(
√
z2(ζ∗2 − θ1)).
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Proceeding the same way, at any t+ 1, θ1|ζt ∼ N(ζt, 1/zt) and ζt|θ1 ∼ N(θ1, 1/zt). After agents

receive additional noisy private information st+1 about wt = Φ(
√
zt(ζ

∗
t − θ1)), their updated belief

becomes

θ1|s1, s2, . . . st+1 ∼ N(
zt

zt + τt+1zt
ζt +

τt+1zt
zt + τt+1zt

(
ζ∗t −

1
√
zt
st+1

)
,

1

zt+1

),

where zt+1 = zt(1 + τt+1) = τ1

∏t+1
u=2(1 + τu). Thus, the sufficient statistic is ζt+1 = zt

zt+τt+1zt
ζt +

τt+1zt
zt+τt+1zt

(
ζ∗t − st+1/

√
zt
)

and ζt+1|θ1 ∼ N(θ1, 1/zt+1). In the monotone equilibrium, agents in group

(t+ 1) attack the preferred regime iff ζt+1 < ζ∗t+1.

A monotone equilibrium can be characterized exactly as in Proposition 2, by replacing the

sufficient statistic s∗t with ζ∗t and by replacing the precision of private information τ with zt =

τ1

∏t
u=2(1+τu). Because of cumulative learning, this precision of the aggregated information depends

on how many pieces of information the agent receives, as well as on the precision of each piece of

information.

If the principal makes a partition in T groups of equal sizes, then by analogy with the case with-

out cumulative learning in Proposition 3, the precision of the private information for the last group

becomes
(√

zT/T
)2

. If the precision zT does not converge to infinity at a faster rate than T 2 - i.e.,

limT→∞
√
zT/T → 0, then for sufficiently large T ,

√
zT/T <

√
τ ∗, where τ ∗ is the threshold precision

below which agents ignore their private information and follow the principal’s recommendation (See

the proof of Corollary 2). Since, the precision of private information is lower for agents in earlier

groups, the same unraveling argument applies inductively. Thus, sufficient diffusion eliminates all

the coordination risk. �

Proof of Proposition 7 After an agent receives a private signal s, he updates his belief

that θ|s ∼ N( τ0
τ0+τ1

θ0 + τ1
τ0+τ1

s, 1
τ0+τ1

). The monotone equilibrium (θ∗t , s
∗
t ) can be characterized as in

Proposition 2, where the recursive relation in Equation (6) becomes

Φ
( √

τ1√
τ0+τ1

Φ−1
(
θ∗t−θ∗t+1

αt

)
+ τ0√

τ0+τ1
(θ0 − ht(θ∗t ))

)
Φ
( √

τ1√
τ0+τ1

Φ−1
(
θ∗t−θ∗t+1

αt

)
+ τ0√

τ0+τ1
(θ0 − ht(θ∗t )) +

√
τ0 + τ1(ht(θ∗t )− ht(0))

) = p. (21)

Comparing the indifference equation for the threshold agent with an informative prior (Equation

(21)) to that with an uninformative prior (Equation (6)), we can identify the prior effect as

τ0√
τ0+τ1

(θ0 − ht(θ∗t )).
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Consider the last group. Note that, in equilibrium, hT (θ∗T ) = θ∗1. Hence, θ0 − hT (θ∗T ) measures

the difference of the expected prior strength compared to the equilibrium threshold for the preferred

regime to succeed and τ0/
√
τ0 + τ1 can be taken as the relative weight assigned to the prior by the

threshold agent. Based on the log-concavity of Φ, it is easy to show that, everything else equal, the

threshold agent will be more optimistic about the success of the preferred regime if the prior effect,

τ0√
τ0+τ1

(θ0 − hT (θ∗T )), is larger. Since ht(θ
∗
t ) = θ∗1 ≤ 1, the worst possible prior effect at any t can be

τ0√
τ0+τ1

(θ0 − 1).

Define L(x, αT ) as follows (x ≡ θ∗T/αT ),

L(x, αT ) ≡
Φ
( √

τ1√
τ0+τ1

Φ−1(x) + τ0√
τ0+τ1

(θ0 − 1)
)

Φ
( √

τ1√
τ0+τ1

Φ−1(x) + τ0√
τ0+τ1

(θ0 − 1) + αT
√
τ0 + τ1x

) .
Based on the log-concavity of Φ and the properties of any possible equilibrium ht function, we can

easily prove that LHS of Equation (21) ≥ L(x, αT ). Similar to G(x, αT
√
τ), L(x, αT ) also has the

following properties:

For any θ0, τ0, and τ , 1. limx→0 L(x, αT ) = L(x = 1, αT ) = 1; 2. limαT→0 L(x, αT ) = 1 and 3. L

is decreasing in αT . Thus, as argued in Lemma 2, for any positive p ∈ (0, 1), there exists α∗ such

that for any αT < α∗, L(x, αT ) > p for all x ∈ [0, 1]. Hence, θ∗T = 0 when αT < α∗. Given θ∗T = 0,

we can show that θ∗T−1 = θ∗T−2 = . . . = θ∗1 = 0 by repeating the same argument inductively.

�
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Online Appendix

Omitted Proofs in the Appendix:

Proof of Proposition 1 For completeness, we reproduce the proof of the result from Morris

and Shin (2003). Readers familiar with the global game literature should skip this proof. In this

proof, we consider a more general payoff structure: our usual payoff specification is a special case

of this one.

Suppose that player i’s payoff function is as follows:

u(ai = 1, θ, w) =

b1(θ, w) if θ ≥ w

c0(θ, w) if θ < w

, u(ai = 0, θ, w) =

c1(θ, w) if θ ≥ w

b0(θ, w) if θ < w.

Assumption 2 The above payoff function has the following properties:

1. b1(θ, w)− c1(θ, w) = ū(θ, w) > 0 and c0(θ, w)− b0(θ, w) = u(θ, w) < 0.

2. (Monotonicity) ū(θ, w) and u(θ, w) are nondecreasing in θ and nonincreasing in w.
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3. (Boundedness) There are constants m, m̄, n, n̄ such that 0 < n < ū(.) < n̄ and 0 < m <

−u(.) < m̄.

Assumption 2.1 implies that when regime 1 succeeds (θ ≥ w), an agent will be better off

if he had supported it (ū > 0) and vice versa. Assumption 2.2 implies that the incentive to

coordinate is nonincreasing in w, while the incentive to attack is nondecreasing in w. Given the

private information s, the player will choose not to attack the preferred regime if she believes the

probability of success is sufficiently high, - i.e.,

P (θ ≥ w|s) ≥ b0(θ, w)− c0(θ, w)

b1(θ, w)− c1(θ, w) + b0(θ, w)− c0(θ, w)
=

1

1 + ū(θ,w)
−u(θ,w)

.

Define p̄ = max( −u
ū−u) = m̄

n+m̄
and p = min( −u

ū−u) = m
n̄+m

. Thus, an agent will never attack regime

1 if he believes that regime 1 will succeed with a probability greater than p̄ and will surely attack

regime 1 if he believes that regime 1 will fail with a probability greater than 1− p.

If an agent gets a private signal s ≥ 1 +F−1(p̄)/
√
τ , he believes that the θ > 1 with probability

greater than p̄. Thus, even if others always attack the preferred regime, he will not attack the

preferred regime. Similarly, if an agent gets a private signal s < −F−1(1 − p)/
√
τ , he believes

that the preferred regime will fail with probability greater than 1 − p. Thus, even if others never

attack the preferred regime, he will attack the preferred regime. Similar to Lemma 2, by iterative

elimination of the never-best responses (from both sides), we get s̄∞ and s∞. The only rationalizable

action for any agent is never to favor the preferred regime when s < s∞ and never to attack when

s ≥ s̄∞.

Thus, the worst possible equilibrium is that agents choose not to attack the preferred regime

if and only if s ≥ s̄∞ and the best equilibrium is that agents choose not to attack the preferred

regime if and only if s ≥ s∞. If s∞ < s̄∞, there are at least two monotone equilibria. We now

prove that there is actually one unique monotone equilibrium, which is the unique equilibrium for

the coordination game.

Consider any possible monotone equilibrium (θ∗, s∗). For any agent i ∈ [0, 1], given that other

agents attack the preferred regime if and only if sj < s∗(j 6= i), an equilibrium arises if he will take

the same strategy. Given the monotone strategy s∗, the total attack at fundamental strength θ is

w(θ, s∗) = F (
√
τ(s∗− θ)). The preferred regime succeeds if and only if θ ≥ w(θ, s∗) or equivalently,
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θ ≥ θ∗. Define the function H(si, s
∗) to be the expected payoff difference of not attacking rather

than attacking the preferred regime for agent i with private noisy signal si as follows:

H(si, s
∗) ≡

ˆ
θ≥θ∗

ū(θ, w(θ, s∗))dF (θ|si) +

ˆ
θ<θ∗

u(θ, w(θ, s∗))dF (θ|si). (22)

Agent i will take the threshold strategy s∗ if H(s∗, s∗) = 0. We want to show that there exists a

unique solution s∗ to the equation H(s∗, s∗) = 0. From w(θ, s∗) = F (
√
τ(s∗ − θ)), we can express

θ = v(w, s∗) = s∗ − F−1(w)/
√
τ . Now w is uniformly distributed for the threshold player as

P (w ≤ W |s∗) = P
(
F
(√

τ(s∗ − θ)
))
≤ W |s∗) = P (θ ≥ s∗ − 1√

τ
F−1(W )|s∗) = W.

By transforming the integral from θ to w, we obtain

H(s∗, s∗) =

ˆ
θ≥θ∗(s∗)

ū(θ, w(θ, s∗))dF (θ|s∗) +

ˆ
θ<θ∗(s∗)

u(θ, w(θ, s∗))dF (θ|s∗) (23)

=

ˆ w(θ∗,s∗)

0

ū(v(w, s∗), w)dw +

ˆ 1

w(θ∗,s∗)

u(v(w, s∗), w)dw. (24)

If there are two different solutions to H(s∗, s∗) = 0, - i.e., H(s∗1, s
∗
1) = H(s∗2, s

∗
2) = 0, we may assume

without loss of generality that s∗1 > s∗2. For any given w, v(w, s∗1) > v(w, s∗2), and we then have

ū(v(w, s∗1), w) > ū(v(w, s∗2), w) > 0 > u(v(w, s∗1), w) > u(v(w, s∗2), w).

We know that, in equilibrium, w(θ∗, s∗) = F (
√
τ(s∗ − θ∗)) = θ∗. Moreover, w(θ∗1, s

∗
1) = θ∗1 >

w(θ∗2, s
∗
2) = θ∗2 since s∗1 > s∗2. Thus,

H(s∗1, s
∗
1)−H(s∗2, s

∗
2) =

ˆ θ∗2

0

(ū(v(w, s∗1), w)− ū(v(w, s∗2), w)) dw

+

ˆ 1

θ∗1

(u(v(w, s∗1), w)− u(v(w, s∗2), w)) dw

+

ˆ θ∗1

θ∗2

(ū(v(w, s∗1), w)− u((v(w, s∗2), w))) dw > 0,

which contradicts our assumption that H(s∗1, s
∗
1) = H(s∗2, s

∗
2) = 0. Hence, there is a unique monotone
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equilibrium. This implies that a unique strategy survives the iterated elimination of never-best

responses.

�

Proof of Step 1 and Step 2 of Lemma 2: Step 1: Iterated elimination

If it is publicly known that θ ≥ 0, then the minimum signal that an agent can receive is −1/(2
√
τ).

If each agent believes that all the agents will ignore their respective private information and never

attack the PPR - i.e., ai(s) = 1 for all s ≥ −1/(2
√
τ), then they should not attack the PPR either

for any s. Since the PPR is viable - i.e., cannot fail if nobody attacks - we cannot rule out the

strategy of never attacking the PPR as a never-best response.

Next, we consider the iterated elimination of “attacking the PPR” (ai = 0) as never-best re-

sponses. We start with the assumption that agents always attack the PPR. We then inductively

argue that after n round of elimination, attacking the PPR is not a rationalizable action if his

private signal is sufficiently high, - i.e., s ≥ s̄n, for some s̄n. This, in turn, implies that the preferred

regime will surely materialize if the fundamental strength is sufficiently high, - i.e., θ ≥ θ̄n.

θ − 1
2
√
τ − 1

2
√
τ

s̄∞ s̄0 = 1 + 1
2
√
τ

θ̄ + 1
2
√
τ

s̄1s̄2

A
NA

Upper Dominance

Region: s ≥ 1 + 1
2
√
τ

A
NA

Iterated Elimination: s̄0 → s̄∞
A: Attack the preferred regime

NA: Not attack the preferred regime

Lower Dominance

Region: s < − 1
2
√
τ

A
NA

A
NA

........

Figure 4: An Illustration: Iterated Elimination of Never Best Responses

Stage 0: Let us define the threshold signal s̄0 ≡ s̄. Suppose that agents play ai = 1 only

when s ≥ s̄0. Note that the preferred regime still succeeds if θ ≥ 1. Let us define the threshold

fundamental θ̄0 ≡ 1.

Stage 1: If an agent publicly knows θ ≥ 0 and receives private information s, she believes

that the preferred regime succeeds with a probability of at least P (θ ≥ θ̄0|s, θ ≥ 0) = F (
√
τ(s −
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θ̄0))/F (
√
τs). The log-concavity of F implies ∂

∂s

(
F (
√
τ(s− θ̄0))/F (

√
τs)
)
> 0. Recall that an agent

plays ai = 1 if he believes that the PPR will succeed with a probability of at least p. Let s̄1 be such

that when s ≥ s̄1 and the agent learns PNV, the agent believes that the PPR will succeed with a

probability of at least p.

If s̄1 > −1/(2
√
τ), then it must satisfy the following condition:

P (θ ≥ θ̄0|s̄1, θ ≥ 0) =
F (
√
τ(s̄1 − θ̄0)

F (
√
τ s̄1)

= p. (25)

Note that when θ ≥ 0, the minimum signal an agent can receive is s = −1/(2
√
τ). Thus, if

F (
√
τ(s̄1 − θ̄0))/F (

√
τ s̄1) > p for all s̄1 ∈ [s, s̄], then s̄1 = −1/(2

√
τ).

Thus, for any rational agent, ai = 0 when s ≥ s̄1 is never a best response. This is common

knowledge to all agents. In the worst possible scenario, all agents decide not to attack the PPR

only when s ≥ s̄1. Hence, if the realization of fundamental strength is θ, the mass of agents who

attack the PPR is P (s < s̄1|θ) = F (
√
τ(s̄1 − θ)). Thus, the PPR fails only when

F (
√
τ(s̄1 − θ)) > θ.

Note that the RHS of the above equation is increasing in fundamental strength θ, while the LHS is

decreasing in fundamental strength. Let us define θ̄1 as

P (s < s̄1|θ̄1) = F (
√
τ(s̄1 − θ̄1)) = θ̄1. (26)

The PPR succeeds whenever θ ≥ θ̄1. From Equation (26), s̄1 = θ̄1 + F−1(θ̄1)/
√
τ . By definition,

s̄0 = θ̄0 + F−1(θ̄0)/
√
τ . Since s̄1 < s̄0, we have θ̄1 < θ̄0 = 1.

Stage 2: If s̄1 = −1/(2
√
τ), then θ̄1 = 0. Therefore, the iteration stops and we can say agents

will never attack the PPR and the regime will succeed whenever θ ≥ 0. Otherwise, iterating the

same process, let s̄2 be such that when s ≥ s̄2 and the agents learn PNV, the agent believes that

the PPR will succeed with a probability of at least p. Thus, s̄2 satisfies the following condition:

P (θ ≥ θ̄1|s̄2, θ ≥ 0) =
F (
√
τ(s̄2 − θ̄1)

F (
√
τ s̄2)

= p. (27)
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If F (
√
τ(s̄2 − θ̄1)/F (

√
τ s̄2) > p for all s̄2 ∈ [s, s̄] then s̄2 = −1/(2

√
τ). By comparing Equations

(25) and (27), we can see that s̄2 < s̄1 since θ̄1 < θ̄0. Since, F (
√
τ(s̄2 − θ̄1))/F (

√
τ s̄2) is increasing

in s̄2, for any rational agent, ai = 0 for s ≥ s̄2 is never a best response. This is common knowledge

to all agents. In the worst possible scenario, all agents decide not to attack the PPR only when

s ≥ s̄2.

Stage n+ 1: After n rounds of elimination of never-best responses, let s̄n be such that, in the

worst possible scenario, an agent with public information θ ≥ 0 does not attack the PPR only when

s ≥ s̄n. Let θ̄n be such that, in the worst possible scenario, the PPR succeeds only when θ ≥ θ̄n.

Either s̄n = −1/(2
√
τ) and θ̄n = 0, or we recursively define s̄n+1 as, (Equation (15))

F (
√
τ(s̄n+1 − θ̄n))

F (
√
τ s̄n+1)

= p

or, s̄n+1 = −1/(2
√
τ) if F (

√
τ(s̄n+1 − θ̄n))/F (

√
τ s̄n+1) > p for all s̄n+1 ∈ [s, s̄]. Also, define θ̄n+1 as

(Equation (16))

θ̄n+1 = F (
√
τ(s̄n+1 − θ̄n+1)).

If θ̄n < θ̄n−1, through Equation (15), we have s̄n+1 < s̄n. From Equation (16), we have θ̄n+1 < θ̄n.

Since θ̄1 < θ̄0, by induction, we get a decreasing sequence {θ̄n}∞n=0.

Equation (16) gives us s̄n+1 = θ̄n+1 + F−1(θ̄n+1)/
√
τ . Substituting this into Equation (15), we

have18

F (
√
τ(θ̄n+1 − θ̄n) + F−1(θ̄n+1))

F (
√
τ θ̄n+1 + F−1(θ̄n+1))

= p. (28)

Let us define M : [0, 1] → [0, 1] such that M(θ) solves for θ̄n+1 in Equation (28) given θ = θ̄n.

If the LHS in Equation (28) is strictly larger than p for all θ̄n+1 ∈ [0, 1] then M(θ) = 0. Since the

LHS of Equation (28) is increasing in θ̄n+1 (follows from log-concavity of F ) and decreasing in θ̄n,

M is a well-defined and a weakly increasing function. The decreasing sequence {θ̄n}∞n=0 satisfies:

1. θ̄0 = 1 and 2. θ̄n+1(θ̄n) = M(θ̄n). Note that if θ̄n = 0, then for any θ̄n+1 ∈ [0, 1], the LHS of

18Note that θ ≤ θ̄ can be taken as another piece of public information. Taking this piece of public information

into consideration, Equation (15) can be written as P (θ > θ̄n|s̄n+1, 0 ≤ θ ≤ θ̄) =
F(
√
τ(s̄n+1−θ̄n))−F(

√
τ(s̄n+1−θ̄))

F(
√
τ(s̄n+1))−F(

√
τ(s̄n+1−θ̄))

= p.

Combining this with Equation (28) yields F (
√
τ(θ̄n+1−θ̄n)+F−1(θ̄n+1))−F (

√
τ(θ̄n+1)−θ̄+F−1(θ̄n+1))

F (
√
τ(θ̄n+1)+F−1(θ̄n+1))−F (

√
τ(θ̄n+1)−θ̄)+F−1(θ̄n+1))

= p. Because we assume

that the prior is uninformative, - i.e., θ̄ > 1 + 1/
√
τ and θ̄n+1 ∈ [0, 1], we have 0 ≤ F (

√
τ(θ̄n+1 − θ̄) + F−1(θ̄n+1)) ≤

F (−1 + F−1(1)) = F (−1 + 1/2) = 0. Thus, the assumptions on F and θ̄ > 1 + 1/
√
τ guarantee that we can ignore

the public information θ ≤ θ̄.
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Equation (28) is strictly larger than p. Hence, θ̄n+1 = M(θ̄n) = 0.

For any τ , we have a decreasing sequence of thresholds {θ̄n}, which is bounded below by 0.

Therefore, the limit exists. Let θ̄∞ = limn→∞ θ̄n. Note that either θ̄∞ = 0 or θ̄∞ > 0. For any given

τ > 0, if θ̄∞ > 0, then it must satisfy

lim
n→∞

F (
√
τ(θ̄n+1 − θ̄n) + F−1(θ̄n+1))

F (
√
τ θ̄n+1 + F−1(θ̄n+1))

=
θ̄∞

F (
√
τ θ̄∞ + F−1(θ̄∞))

= G(θ̄∞,
√
τ) = p, (29)

where G(.) is as defined in Equation (10).

Step 2: Worst monotone equilibrium

Suppose that θ̄∞ > 0 and agents do not attack the PPR if and only if s ≥ s̄∞ = θ̄∞+F−1(θ̄∞)/
√
τ .

Then the PPR will succeed if and only if θ ≥ θ̄∞. Since G(θ̄∞,
√
τ) = p, the agent who receives

signal s̄∞ is indifferent to both attacking and not attacking the PPR. Hence, (θ̄∞, s̄∞) constitutes

a monotone equilibrium, when θ̄∞ > 0. Also, (0,−1/(2
√
τ)) is always a monotone equilibrium (See

Corollary 3). Therefore, (θ̄∞, s̄∞) is a monotone equilibrium.

It is easy to see that G(.) has the following properties: (1) x ≤ G(x,
√
τ) ≤ 1, and

limx→1G(x,
√
τ) = 1; (2) G(x,

√
τ) is continuously differentiable with respect to x; (3) G(x,

√
τ)

is decreasing in τ . Next, we show that θ̄∞ = max{θ ∈ [0, 1]|G(θ,
√
τ) ≤ p}. Recall from Equa-

tion (14) that θ∗h = max{θ ∈ [0, 1]|G(θ,
√
τ) ≤ p}. If θ∗h > 0, then G(θ∗h,

√
τ) = p because

of the continuity of G. θ∗h ∈ [0, 1] is obviously a fixed point of the function M . Now, since

θ0 = 1 ≥ θ∗h and M is a weakly increasing fuction, θ̄1 = M(θ̄0) ≥ M(θ∗h) = θ∗h. Similarly,

θ̄2 = M(θ̄1) ≥ M(θ∗h) = θ∗h and thus θ̄n ≥ θ∗h for all n. Hence, θ̄∞ ≥ θ∗h. Since G(θ̄∞,
√
τ) = p

and θ∗h = max{θ ∈ [0, 1]|G(θ,
√
τ) ≤ p}, we have θ̄∞ ≤ θ∗h. Thus θ̄∞ = θ∗h when θ∗h > 0. Other-

wise, if max{θ ∈ [0, 1]|G(θ,
√
τ) ≤ p} = 0, then either G(0,

√
τ) = p or G(θ,

√
τ) > p for all θ. In

either case, θ̄∞ = 0. Hence, we have θ̄∞ = max{θ ∈ [0, 1]|G(θ,
√
τ) ≤ p}. This proves the first part

of Lemma 2.

Uniform Diffusion Equilibria: numerical example

We consider the policy, (T, (α)) of uniform diffusion where αt = 1/T for all t ∈ {1, 2, . . . , T}.

The precision of the private information is τ = 1, p = 0.7 and f(x) = (2 + 4x)1(−0.5 ≤ x <

0) + (2− 4x)1(0 ≤ x ≤ 0.5). The following table illustrates the worst possible equilibrium (highest
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θ∗1) out of all the possible equilibria. It can be seen that conforming to the theoretical prediction in

the model, under sufficient diffusion, θ∗1 = 0 is the unique equilibrium.

Group Size θ∗1 θ∗2 θ∗3 θ∗4 θ∗5
1 0.7 0 0 0 0

1/2 0.66 0.31 0 0 0
1/3 0.39 0.15 0 0 0
1/4 0.13 0 0 0 0
1/5 0 0 0 0 0

Table 1: Worst possible equilibrium {θ∗t }Tt=1 for uniform diffusion
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